Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Polar

Give the rectangular coordinates of the point with polar coordinates 

.

Possible Answers:

Correct answer:

Explanation:

The point will have rectangular coordinates .

Example Question #1 : Polar Form

What would be the equation of the parabola  in polar form?

Possible Answers:

Correct answer:

Explanation:

We know  and .

Subbing that in to the equation  will give us .

Multiplying both sides by  gives us 

.

Example Question #1 : Polar Form

A point in polar form is given as .

Find its corresponding  coordinate.

Possible Answers:

Correct answer:

Explanation:

To go from polar form to cartesion coordinates, use the following two relations.

In this case, our  is  and our  is .

Plugging those into our relations we get 

which gives us our  coordinate.

Example Question #1 : Polar

What is the magnitude and angle (in radians) of the following cartesian coordinate?

Give the answer in the format below.

Possible Answers:

Correct answer:

Explanation:

Although not explicitly stated, the problem is asking for the polar coordinates of the point . To calculate the magnitude, , calculate the following:

To calculate , do the following:

 in radians. (The problem asks for radians)

 

Example Question #6 : Polar

What is the following coordinate in polar form?

Provide the angle in degrees.

Possible Answers:

Correct answer:

Explanation:

To calculate the polar coordinate, use

However, keep track of the angle here. 68 degree is the mathematical equivalent of the expression, but we know the point (-2,-5) is in the 3rd quadrant, so we have to add 180 to it to get 248.

Some calculators might already have provided you with the correct answer.

.

Example Question #1 : Polar Form

What is the equation  in polar form?

Possible Answers:

Correct answer:

Explanation:

We can convert from rectangular form to polar form by using the following identities:  and . Given , then .

. Dividing both sides by ,

 

Example Question #1 : Polar Form

What is the equation  in polar form?

Possible Answers:

None of the above

Correct answer:

Explanation:

We can convert from rectangular form to polar form by using the following identities:  and . Given , then . Multiplying both sides by ,

Example Question #5 : Polar Form

What is the equation  in polar form?

Possible Answers:

None of the above

Correct answer:

Explanation:

We can convert from rectangular form to polar form by using the following identities:  and . Given , then . Simplifying accordingly, 

Example Question #6 : Polar Form

Given  and , what is  in terms of  (rectangular form)?

Possible Answers:

Correct answer:

Explanation:

Knowing that  and , we can isolate  in both equations as follows:

Since both of these equations equal , we can set them equal to each other:

 

Example Question #172 : Parametric, Polar, And Vector

Convert the following function into polar form:

Possible Answers:

Correct answer:

Explanation:

The following formulas were used to convert the function from polar to Cartestian coordinates:

Note that the last formula is a manipulation of a trignometric identity.

Simply replace these with x and y in the original function.

Learning Tools by Varsity Tutors