Calculus 2 : Calculus II

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Limits And Continuity

Screen shot 2015 08 17 at 6.27.41 pm

Given the above graph of \displaystyle f(x), over which of the following intervals is \displaystyle f(x) continuous?

Possible Answers:

None of the above

\displaystyle (-\infty,1)\cup(1,\infty)

\displaystyle (-\infty,0)\cup(0,\infty)

\displaystyle (-\infty,\infty)

\displaystyle (-\infty,-1)\cup(-1,\infty)

Correct answer:

\displaystyle (-\infty,0)\cup(0,\infty)

Explanation:

For a function \displaystyle f(x) to be continuous at a given point \displaystyle (a, f(a)), it must meet the following two conditions:

1.) The point \displaystyle (a, f(a)) must exist, and

2.) \displaystyle \lim_{x\rightarrow a}f(x)=f(a).

 

Examining the above graph, \displaystyle f(x) is continuous at every possible value of \displaystyle x except for \displaystyle x=0. Thus, \displaystyle f(x) is continuous on the interval \displaystyle (-\infty,0)\cup(0,\infty).

Example Question #8 : Limits And Continuity

Screen shot 2015 08 17 at 6.36.23 pm

Given the above graph of \displaystyle f(x), over which of the following intervals is \displaystyle f(x) continuous?

 

Possible Answers:

\displaystyle (-\infty,-1)\cup(-1,0)\cup(0,\infty)

\displaystyle (-\infty,1)\cup(1,\infty)

\displaystyle (-\infty,-1)\cup(-1,1)\cup(1,\infty)

\displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty)

\displaystyle (-\infty,-1)\cup(-1,\infty)

Correct answer:

\displaystyle (-\infty,-1)\cup(-1,1)\cup(1,\infty)

Explanation:

For a function \displaystyle f(x) to be continuous at a given point \displaystyle (a, f(a)), it must meet the following two conditions:

1.) The point \displaystyle (a, f(a)) must exist, and

2.) \displaystyle \lim_{x\rightarrow a}f(x)=f(a).

 

Examining the above graph, \displaystyle f(x) is continuous at every possible value of \displaystyle x except for \displaystyle x=-1 and \displaystyle x=1. Thus, \displaystyle f(x) is continuous on the interval \displaystyle (-\infty,-1)\cup(-1,1)\cup(1,\infty).

Example Question #9 : Limits And Continuity

Screen shot 2015 08 17 at 6.45.07 pm

Given the above graph of \displaystyle f(x), over which of the following intervals is \displaystyle f(x) continuous?

Possible Answers:

\displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty)

\displaystyle (-\infty,-1)\cup(-1,0)\cup(0,\infty)

\displaystyle (-\infty,0)\cup(0,\infty)

\displaystyle (-\infty,-1)\cup(-1,1)\cup(1,\infty)

None of the above

Correct answer:

\displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty)

Explanation:

For a function \displaystyle f(x) to be continuous at a given point \displaystyle (a, f(a)), it must meet the following two conditions:

1.) The point \displaystyle (a, f(a)) must exist, and

2.) \displaystyle \lim_{x\rightarrow a}f(x)=f(a).

 

Examining the above graph, \displaystyle f(x) is continuous at every possible value of \displaystyle x except for \displaystyle x=0 and \displaystyle x=1. Thus, \displaystyle f(x) is continuous on the interval \displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty).

Example Question #2 : Limits And Continuity

Screen shot 2015 08 18 at 9.51.12 am

Given the above graph of , over which of the following intervals is continuous?

 

Possible Answers:

\displaystyle (-\infty,-\frac{1}{2})\cup(\frac{1}{2},\infty)

\displaystyle (-\infty,-1)\cup(-1,\infty)

\displaystyle (-\infty,1)\cup(1,\infty)

None of the above

Correct answer:

Explanation:

For a function to be continuous at a given point , it must meet the following two conditions:

1.) The point must exist, and

2.) .

 

Examining the above graph, is continuous at every possible value of except for . Thus, is continuous on the interval .

Example Question #501 : Limits

Screen shot 2015 08 18 at 10.00.45 am

Given the above graph of , over which of the following intervals is  continuous?

Possible Answers:

\displaystyle (-\infty,-2)\cup(-2,0)\cup(0,\infty)

\displaystyle (-\infty,-2)\cup(-2,1)\cup(1,\infty)

\displaystyle (-\infty,0)\cup(0,2)\cup(2,\infty)

\displaystyle (-\infty,-2)\cup(-2,2)\cup(2,\infty)

\displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty)

Correct answer:

\displaystyle (-\infty,0)\cup(0,2)\cup(2,\infty)

Explanation:

For a function  to be continuous at a given point , it must meet the following two conditions:

1.) The point  must exist, and

2.) .

 

Examining the above graph,  is continuous at every possible value of  except for  and \displaystyle x=2. Thus,  is continuous on the interval \displaystyle (-\infty,0)\cup(0,2)\cup(2,\infty).

Example Question #502 : Limits

Screen shot 2015 08 18 at 11.04.49 am

Given the above graph of , over which of the following intervals is  continuous?

Possible Answers:

\displaystyle (-\infty,-1)\cup(-1,\infty)

\displaystyle (-\infty,-\frac{1}2{})\cup(-\frac{1}{2},\infty)

\displaystyle (-\infty,0)\cup(0,\infty)

\displaystyle (-\infty,2)\cup(2,\infty)

\displaystyle (-\infty,1)\cup(1,\infty)

Correct answer:

\displaystyle (-\infty,-1)\cup(-1,\infty)

Explanation:

For a function  to be continuous at a given point , it must meet the following two conditions:

1.) The point  must exist, and

2.) .

 

Examining the above graph,  is continuous at every possible value of  except for \displaystyle x=-1. Thus,  is continuous on the interval \displaystyle (-\infty,-1)\cup(-1,\infty).

Example Question #503 : Limits

Screen shot 2015 08 19 at 1.42.40 pm

Given the above graph of , over which of the following intervals is continuous?

Possible Answers:

\displaystyle (-\infty,0)\cup(0,\infty)

\displaystyle (-\infty,-11)\cup(-11,11)\cup(11,\infty)

\displaystyle (-\infty,11)\cup(11,\infty)

\displaystyle (-\infty,-11)\cup(-11,\infty)

\displaystyle (-\infty,0)\cup(0,11)\cup(11,\infty)

Correct answer:

\displaystyle (-\infty,11)\cup(11,\infty)

Explanation:

For a function to be continuous at a given point , it must meet the following two conditions:

1.) The point must exist, and

2.) .

 

Examining the above graph, is continuous at every possible value of except for \displaystyle x=11. Thus, is continuous on the interval \displaystyle (-\infty,11)\cup(11,\infty).

Example Question #504 : Limits

Screen shot 2015 08 19 at 2.31.48 pm

Given the above graph of , over which of the following intervals is  continuous?

Possible Answers:

\displaystyle (-\infty,-2)\cup(-2,2)\cup(2,\infty)

\displaystyle (-\infty,2)\cup(2,\infty)

\displaystyle (-\infty,0)\cup(0,\infty)

\displaystyle (-\infty,1)\cup(1,\infty)

\displaystyle (-\infty,-2)\cup(-2,\infty)

Correct answer:

\displaystyle (-\infty,2)\cup(2,\infty)

Explanation:

For a function  to be continuous at a given point , it must meet the following two conditions:

1.) The point  must exist, and

2.) .

 

Examining the above graph,  is continuous at every possible value of  except for \displaystyle x=2. Thus,  is continuous on the interval \displaystyle (-\infty,2)\cup(2,\infty).

Example Question #505 : Limits

Screen shot 2015 08 19 at 2.44.53 pm

Given the above graph of , over which of the following intervals is  continuous?

Possible Answers:

\displaystyle (-\infty,-1)\cup(-1,0)\cup(0,\infty)

\displaystyle (-\infty,5)\cup(5,\infty)

\displaystyle (-\infty,-5)\cup(-5,\infty)

\displaystyle (-\infty,0)\cup(0,5)\cup(5,\infty)

\displaystyle (-\infty,-5)\cup(-5,5)\cup(5,\infty)

Correct answer:

\displaystyle (-\infty,5)\cup(5,\infty)

Explanation:

For a function  to be continuous at a given point , it must meet the following two conditions:

1.) The point  must exist, and

2.) .

 

Examining the above graph,  is continuous at every possible value of  except for \displaystyle x=5. Thus,  is continuous on the interval \displaystyle (-\infty,5)\cup(5,\infty).

Example Question #506 : Limits

Screen shot 2015 08 19 at 4.51.39 pm

Given the above graph of , over which of the following intervals is continuous?

Possible Answers:

\displaystyle (-\infty,-1)\cup\(-1,0)\cup(0,1)\cup(1,\infty)

\displaystyle (-\infty,-1)\cup\(-1,1)\cup(1,\infty)

\displaystyle (-\infty,0)\cup(0,1)\cup(1,\infty)

\displaystyle (-\infty,-\frac{1}{2})\cup\(-\frac{1}{2},0)\cup(0,\frac{1}{2})\cup(\frac{1}{2},\infty)

\displaystyle (-\infty,-2)\cup\(-2,0)\cup(0,2)\cup(2,\infty)

Correct answer:

\displaystyle (-\infty,-1)\cup\(-1,0)\cup(0,1)\cup(1,\infty)

Explanation:

For a function to be continuous at a given point , it must meet the following two conditions:

1.) The point must exist, and

2.) .

 

Examining the above graph, is continuous at every possible value of except for \displaystyle x=-1, and \displaystyle x=1. Thus, is continuous on the interval \displaystyle (-\infty,-1)\cup\(-1,0)\cup(0,1)\cup(1,\infty).

 

 

Learning Tools by Varsity Tutors