All Calculus 1 Resources
Example Questions
Example Question #7 : Trapezoidal Approximation
Evaluate the integral using the trapezoidal approximation:
To evaluate a definite integral using the trapezoidal approximation, we must use the following formula:
So, using the above formula, we get
which simplifies to
Example Question #8 : Trapezoidal Approximation
Evaluate the integral using the trapezoidal approximation:
To evaluate the definite integral using the trapezoidal approximation, we must use the following formula:
Using the above formula, we get
Example Question #3 : How To Find Trapezoidal Approximation By Graphing Functions
Evaluate the integral using the trapezoidal approximation:
To evaluate the integral using the trapezoidal approximation, we must use the following formula:
Using the formula, we get
Example Question #10 : Trapezoidal Approximation
Evaluate the integral using the trapezoidal approximation:
To evaluate the definite integral using the trapezoidal approximation, the following formula is used:
Using the above formula, we get
.
Example Question #91 : Intervals
Evaluate the integral using the trapezoidal approximation:
To evaluate a definite integral using the trapezoidal approximation, we use the following formula:
Using the formula, we get
Example Question #92 : Intervals
Integrate using the trapezoidal approximation:
To solve the integral using the trapezoidal approximation, we must use the following formula:
Now, using the above formula, we can approximate the integral:
Example Question #13 : How To Find Trapezoidal Approximation By Graphing Functions
Evaluate the following integral using the trapezoidal approximation:
where a and b are constants,
To solve the integral, it is easiest to first rewrite it so that the larger value is the upper bound. This is done by switching the bounds and also making the integral negative:
Now, we can use the trapezoidal approximation, which states that for a definite integral:
Using the above formula for our integral, we get
Example Question #1 : How To Find Continuous On The Interval By Graphing Functions
On which of the following intervals is the function continuous?
The function has a removable discontinuity at .
Since this function is undefined at is it not continuous across any interval containing .
Notice that the correct answer is an open interval that goes up to, but does not include .
Example Question #1 : How To Find Continuous On The Interval By Graphing Functions
Describe the function
on the interval .
Continuous; Differentiable
Non-continuous; Non-differentiable
Continuous; Non-differentiable
Non-continuous; Differentiable
Continuous; Non-differentiable
This function (shown below) is defined for every value along the interval with the given conditions (in fact, it is defined for all real numbers), and is therefore continuous. However, there is a cusp point at (0, 0), and the function is therefore non-differentiable at that point.
Example Question #215 : Graphing Functions
On what interval is the derivative of the function:
continuous?
The function is not continuous.
The derivative of the funtion using the power rule
is ,
so it is not continuous when or is negative.
This occurs when , so the interval of continuity will be when , which is the interval .