All Calculus 1 Resources
Example Questions
Example Question #644 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #831 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #646 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #647 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #648 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #649 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #1861 : Calculus
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #651 : Other Differential Functions
Find the derivative.
In order to find the derivative of a given function, there are sets of rules you must follow:
If (constant), then the derivative is .
If , then the derivative is .
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
If , then the derivative is . This is known as the chain rule.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Example Question #651 : Other Differential Functions
Find the derivative.
In order to find the derivative of a given function, there are sets of rules you must follow:
If (constant), then the derivative is .
If , then the derivative is .
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
If , then the derivative is . This is known as the chain rule.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Example Question #840 : Functions
Find the derivative.
In order to find the derivative of a given function, there are sets of rules you must follow:
If (constant), then the derivative is .
If , then the derivative is .
If , then the derivative is .
If , the the derivative is .
If , then the derivative is .
There are many other rules for the derivatives for trig functions.
In this case, we must find the derivative of the following:
That is done by doing the following:
Therefore, the answer is:
Certified Tutor