All Calculus 1 Resources
Example Questions
Example Question #581 : How To Find Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #582 : How To Find Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #583 : How To Find Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of an exponential:
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #771 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Product rule:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #772 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of an exponential:
Product rule:
Note that u and v may represent large functions, and not just individual variables!
Taking the derivative of the function
The slope of the tangent is at the point
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #581 : Other Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #584 : How To Find Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Derivative of an exponential:
Trigonometric derivative:
Product rule:
Note that u and v may represent large functions, and not just individual variables!
Taking the derivative of the function function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #771 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Product rule:
Note that u and v may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #771 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Quotient rule:
Note that u and v may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Example Question #777 : Differential Functions
Determine the slope of the line that is normal to the function at the point
A line that is normal, that is to say perpendicular to a function at any given point will be normal to this slope of the line tangent to the function at that point.
The slope of the tangent can be found by taking the derivative of the function and evaluating the value of the derivative at a point of interest.
We'll need to make use of the following derivative rule(s):
Trigonometric derivative:
Note that u may represent large functions, and not just individual variables!
Taking the derivative of the function at the point
The slope of the tangent is
Since the slope of the normal line is perpendicular, it is the negative reciprocal of this value
Certified Tutor
Certified Tutor