Biochemistry : Enzyme Kinetics and Inhibition

Study concepts, example questions & explanations for Biochemistry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Noncompetitive Inhibition

When inhibition takes place at a site that is not the active site, this is called __________ inhibition.

Possible Answers:

allosteric

substrate

trans-competitive

competitive

None of these

Correct answer:

allosteric

Explanation:

An allosteric (meaning "other site") inhibition will involve binding of a molecule to a site other than the active site. Competitive inhibition involves the binding of an inhibitor molecule to the active site of an enzyme. Both forms of inhibition decrease the rate of an enzyme-catalyzed reaction.

Example Question #2 : Noncompetitive Inhibition

There are at least four types of glucose transporter in the body. GLUT1 and GLUT3 are located in most tissues including the brain and the red blood cells. These glucose transporters rapidly take up glucose from the blood but have the lowest  value. GLUT2 is commonly found in the liver and the pancreas. GLUT2 has a lower affinity for glucose but has the highest  value. GLUT4 is common in skeletal tissues and in adipose tissues. This transporter is normally not active for uptake unless stimulated by insulin or during exercise.  

Suppose there is a molecule that is able to lower the  of the enzyme. What type of regulation would this molecule exhibit? 

Possible Answers:

Noncompetitive inhibition

Uncompetitive stimulation 

Competitive inhibition 

Cooperative inhibition 

Cooperative stimulation

Correct answer:

Noncompetitive inhibition

Explanation:

Molecules that are able to bind to an enzyme and prevent it from reaching  are noncompetitive inhibitors. Take carbon monoxide for example. The molecule binds to the hemoglobin but stays attached to it. Oxygen is not able to break the covalent bond between the carbon monoxide and the heme group and is therefore a noncompetitive. With carbon monoxide permanently attached to the heme, the hemoglobin cannot reach full saturation of oxygen and therefore  is lowered.

Example Question #2 : Noncompetitive Inhibition

A molecule binds to the allosteric site of an enzyme. What can you conclude about this molecule?

I. The molecule cannot be a competitive inhibitor

II. The molecule can increase the activity of the enzyme

III. The molecule will decrease the affinity between enzyme and substrate

Possible Answers:

I and II

I only

I and III

III only

Correct answer:

I and II

Explanation:

Allosteric sites on an enzyme bind both enhancers and inhibitors. Since the question only states that it binds to allosteric site, the molecule could be an inhibitor or an enhancer of the enzyme. Recall that inhibitors inhibit the activity of the enzyme whereas enhancers increase the activity of the enzyme.

Noncompetitive inhibitors and/or activators bind to the allosteric site. Competitive inhibitors, on the other hand, bind to the active site; therefore, this molecule cannot be a competitive inhibitor. Competitive inhibitors decrease the affinity between enzyme and substrate whereas noncompetitive inhibitors do not alter the affinity. Since we already determined it cannot be a competitive inhibitor, this molecule cannot decrease the affinity.

Example Question #2 : Noncompetitive Inhibition

Which of the following is true regarding noncompetitive inhibition?

Possible Answers:

More that one of these are true

Substrate can never bind to the enzyme in the presence of a noncompetitive inhibitor

Noncompetitive inhibition decreases the maximum efficacy of the enzymes

Noncompetitive inhibition decreases the affinity of the enzyme to the substrate

Correct answer:

Noncompetitive inhibition decreases the maximum efficacy of the enzymes

Explanation:

Noncompetitive inhibition is characterized by a decrease in the maximum velocity (or efficacy) of an enzyme. Noncompetitive inhibitors bind irreversibly to the enzyme and prevent the substrate-enzyme activity. This decreases the efficacy of the enzyme. Unlike competitive inhibition, noncompetitive inhibition cannot be overcome by increasing the concentration of substrates because of the irreversible interaction between inhibitor and enzyme.

Noncompetitive inhibition does not alter the Michaelis-Menten constant, . This means that the affinity between enzyme and substrate is not altered in noncompetitive inhibition. Noncompetitive inhibitors bind to allosteric sites on the enzyme and prevent the substrate-enzyme interaction by altering the active site. Sometimes, noncompetitive inhibitors allow for substrate-enzyme interaction but inactivate the activity of the enzyme; therefore, noncompetitive inhibitors allow for substrate binding sometimes, but they always prevent the enzyme activity and the enzymatic reaction.

Example Question #3 : Noncompetitive Inhibition

Upon analysis, it is determined that the interaction between an inhibitor and an enzyme involves the formation of bonds between nitrogen and hydrogen atoms in adjacent molecules. Which of the following is true regarding this molecule?

Possible Answers:

It decreases the affinity between the substrate and enzyme

More than one of these

It binds to the allosteric site of the enzyme

Its effects can be overcome by increasing substrate concentration

Correct answer:

More than one of these

Explanation:

The question states that the bond between nitrogen and hydrogen atoms occur between adjacent molecules; therefore, this is an intermolecular bond. Recall that hydrogen bonds are intermolecular bonds that occur between hydrogen atoms and either nitrogen, oxygen, or fluorine atoms. This means that the intermolecular bond involved in this question is a hydrogen bond. Hydrogen bonds (like other intermolecular bonds) are reversible and can be broken by applying some energy. Since the bond between the inhibitor and the enzyme is reversible, the inhibitor must be a competitive inhibitor. Noncompetitive inhibitors, on the other hand, bind irreversibly (via covalent bonds) to the allosteric site on the enzyme.

Competitive inhibitors can be overcome by increasing substrate concentration. This occurs because the reversible, weak bonds between the inhibitor and enzyme can be broken when there is excess substrate present (substrate competes with the competitive inhibitors for the enzyme). Competitive inhibitors also increase the Michaelis-Menton constant, . Increasing  decreases affinity between substrate and enzyme.

Example Question #11 : Enzyme Kinetics And Inhibition

If an enzymatic reaction is interrupted by the presence of a non-competitive inhibitor, which of the following best describes how the reaction kinetics will be effected? 

Possible Answers:

 decreases but  increases

Both  and  decrease

Only  will be increased

Only  will decrease

Only  will be decreased

Correct answer:

Only  will be decreased

Explanation:

Non-competitive inhibitors work by binding the enzyme without hindering the substrate's access to the active site. Therefore, the affinity of the enzyme to its substrate is not impacted , however it does negatively impact the enzyme's ability to form the final product. Therefore, the maximum velocity  of the reaction is decreased. 

Example Question #1 : Uncompetitive Inhibition

An uncompetitive inhibitor binds to which of the following?

Possible Answers:

The active site of the enzyme at the same time as the substrate

An allosteric site on the enzyme only when the substrate has not yet bound to the active site

An allosteric site on the enzyme, only when the substrate is already bound to the active site

An allosteric site on the enzyme, regardless of whether or not the substrate is already bound to the active site

The active site of the enzyme before the substrate has a chance to bind

Correct answer:

An allosteric site on the enzyme, only when the substrate is already bound to the active site

Explanation:

Uncompetitive inhibition occurs when an inhibitor binds to an allosteric site of a enzyme, but only when the substrate is already bound to the active site. In other words, an uncompetitive inhibitor can only bind to the enzyme-substrate complex.

Example Question #2 : Uncompetitive Inhibition

Which of the following changes occurs when an uncompetitive inhibitor binds to the enzyme-substrate complex?

Possible Answers:

 decreases

 increases

 remains unchanged

 remains unchanged

 increases

Correct answer:

 decreases

Explanation:

Uncompetitive inhibition occurs when an inhibitor binds to an allosteric site on the enzyme, but only when it is an enzyme-substrate complex. Because the inhibitor binds to the enzyme-substrate complex and then changes the enzyme's conformation, it makes it incredibly difficult for the substrate to become unbound from the enzyme. Thus, the apparent affinity of the substrate for the enzyme is dramatically increased. A decrease in  represents an increase in affinity.  still decreases when an uncompetitive inhibitor binds.

Example Question #2 : Uncompetitive Inhibition

Which of the following is true about noncompetitive inhibition?

Possible Answers:

Vmax stays the same, however Km increases

The inhibitor binds independently of substrate binding however km does not change

The inhibitor competes with the substrate to bind to the active site, and drops the Vmax

The inhibitor binds to the same site as the substrate, dropping the Km

The inhibitor binds to a separate site from the substrate and enhances enzyme activity

Correct answer:

The inhibitor binds independently of substrate binding however km does not change

Explanation:

With uncompetitive inhibitors, the inhibitor binds to a site separate from the binding site of the substrate. This can occur even while the substrate is bound to the enzyme, blocking the process and reduce the catalysis of the enzyme. 

This will result in the reduction of Vmax because the enzymes ability for catalysis is being reduced by the binding of inhibitor to the enzyme-substrate complex. Km does not change because the substrate and the uncompetitive inhibitor bind to different sites. 

Example Question #3 : Uncompetitive Inhibition

Which of the following is true of uncompetitive inhibitors of enzymes?

Possible Answers:

They decrease the apparent KM and increase the apparent VM on a Lineweaver-Burke plot.

They bind to both the enzyme-substrate complex and the free enzyme.

They only affect enzymes that act on multiple substrates.

They lower the concentration of free enzyme available to bind to substrate.

There effect can be countered by adding more substrate.

Correct answer:

They only affect enzymes that act on multiple substrates.

Explanation:

The correct answer is that uncompetitive inhibitors of enzymes only affect enzymes that act on multiple substrates. Uncompetitive inhibitors bind to the enzyme-substrate complex only, not to the free enzyme. They distort the active site to prevent the enzyme from being catalytically active without actually blocking the binding of the substrate. This cannot occur with an enzyme that only acts on a single substrate at a time. Adding more substrate and lowering the amount of free enzyme available both apply to competitive inhibitors, which bind to free enzymes and block the substrate-binding site of the enzyme. Uncompetitive inhibitors do decrease the apparent KM on a Lineweaver-Burke plot, but they also lower the apparent VM.

Learning Tools by Varsity Tutors