Basic Arithmetic : Basic Arithmetic

Study concepts, example questions & explanations for Basic Arithmetic

varsity tutors app store varsity tutors android store

Example Questions

Example Question #101 : Basic Arithmetic

What is \displaystyle 0.87 as a percent?

Possible Answers:

\displaystyle 0.87\%

\displaystyle 87\%

\displaystyle 8.7\%

\displaystyle 870\%

Correct answer:

\displaystyle 87\%

Explanation:

To change a decimal into a percent, start by multiplying the decimal by 100.

\displaystyle 0.87\times100=87

Then, add a percent sign to the end of that number.

\displaystyle 87\rightarrow87\%

Example Question #102 : Basic Arithmetic

What is \displaystyle 0.71 as a percent?

Possible Answers:

\displaystyle 710\%

\displaystyle 71\%

\displaystyle 7.1\%

\displaystyle 0.71\%

Correct answer:

\displaystyle 71\%

Explanation:

To change a decimal into a percent, start by multiplying the decimal by 100.

\displaystyle 0.71\times100=71

Then add a percent sign to the end of the number.

\displaystyle 71\rightarrow71\%

Example Question #103 : Basic Arithmetic

What is \displaystyle 0.54 as a percent?

Possible Answers:

\displaystyle 540\%

\displaystyle 5.4\%

\displaystyle 54\%

\displaystyle 0.54\%

Correct answer:

\displaystyle 54\%

Explanation:

To change a decimal into a percent, multiply the decimal by 100 then add the percent sign.

\displaystyle 0.54\times100=54

\displaystyle 54\rightarrow 54\%

Example Question #104 : Basic Arithmetic

Change \displaystyle 0.99 into a percent.

Possible Answers:

\displaystyle 0.99\%

\displaystyle 9.9\%

\displaystyle 990\%

\displaystyle 99\%

Correct answer:

\displaystyle 99\%

Explanation:

To change a decimal into a percent, multiply the decimal by \displaystyle 100 then add a percent sign at the end of that number.

\displaystyle 0.99\times100=99

\displaystyle 99\rightarrow99\%

Example Question #5 : Changing A Decimal To A Percent

What is \displaystyle 0.95254 expressed as a percentage rounded to the nearest tenth?

Possible Answers:

\displaystyle \small \small 95\%

\displaystyle \small 100\%

\displaystyle \small 95.25\%

\displaystyle \small 95.3\%

\displaystyle \small \small 0.95\%

Correct answer:

\displaystyle \small 95.3\%

Explanation:

Percents are numbers expressing parts of \displaystyle \small 100\displaystyle \small \small 1\% means \displaystyle \small 1 part of \displaystyle \small 100, or \displaystyle \small \frac{1}{100}

 

The simplest way to convert a decimal to a percentage is to move the decimal place over two places to the right. We move the decimal point to after the hundredths place because we are rewriting the decimal as a portion of \displaystyle \small 100. Therefore:

\displaystyle \small 0.9525=95.25\%

Now, we need to round the percentage to the nearest tenth. The number after the tenths place is a five, so we need to round up:

\displaystyle \small 95.25\%\Rightarrow95.3\%

\displaystyle \small 95.3\% is therefore our final answer.

Example Question #32 : Percents And Decimals

What is \displaystyle \small 2.420398 expressed as a percentage rounded to the nearest hundredth?

Possible Answers:

\displaystyle \small 242.04\%

\displaystyle \small 2.42\%

\displaystyle \small 0.02\%

\displaystyle \small 24.20\%

\displaystyle \small 242\%

Correct answer:

\displaystyle \small 242.04\%

Explanation:

Percents are numbers expressing parts of \displaystyle \small 100\displaystyle \small \small 84\% is the same thing as saying \displaystyle \small 84 parts of \displaystyle \small 100 or \displaystyle \small \frac{84}{100}

 

The simplest way to convert a decimal to a percentage is to move the decimal place over two places to the right. We move the decimal point to after the hundredths place because we are rewriting the decimal as a portion of \displaystyle \small 100. Therefore:

\displaystyle \small 2.420398=242.0398\%

In everyday usage, percents usually are between \displaystyle \small \small 0\% and \displaystyle \small 100\%. However, when a number is greater than \displaystyle \small 1, it's corresponding percentage is going to be greater than \displaystyle \small 100\%. The next step of this problem is to round the percentage we have to the nearest hundredth. The number in the thousandths place is \displaystyle \small 9, therefore, we're going to round up:

\displaystyle \small 242.0398\%\Rightarrow242.04\%

\displaystyle \small 242.04\% is therefore our final answer.

Example Question #31 : Percents And Decimals

Change \displaystyle 78\% to a decimal.

Possible Answers:

\displaystyle 0.78

\displaystyle 0.078

\displaystyle 7.8

\displaystyle 78

Correct answer:

\displaystyle 0.78

Explanation:

To change a percent to a decimal, drop the "%" sign then divide by 100.

\displaystyle 78\%\rightarrow78

\displaystyle \frac{78}{100}=0.78

Example Question #105 : Basic Arithmetic

What is \displaystyle 74\% as a decimal?

Possible Answers:

\displaystyle 740.0

\displaystyle 0.074

\displaystyle 0.74

\displaystyle 7.4

Correct answer:

\displaystyle 0.74

Explanation:

To change a percent by the decimal, first drop the percent sign.

\displaystyle 74\%\rightarrow74

Then, divide the number by 100.

\displaystyle 74\div100=0.74

Example Question #3 : Changing A Percent To A Decimal

Convert the following percent to a decimal:

\displaystyle 68\%.

Possible Answers:

\displaystyle 6.8

\displaystyle 0.068

\displaystyle 0.608

\displaystyle 0.68

Correct answer:

\displaystyle 0.68

Explanation:

To convert a percent into a decimal, divide the percent by 100 or move the decimal point 2 places to the left.

\displaystyle \frac{68}{100}=0.68 or 68 hundredths.

Example Question #4 : Changing A Percent To A Decimal

Convert the following percent to a decimal:

\displaystyle 1.33\%.

Possible Answers:

\displaystyle 0.0133

\displaystyle 0.00133

\displaystyle 1.33

\displaystyle 0.133

Correct answer:

\displaystyle 0.0133

Explanation:

To convert a percent to a decimal, divide the percent by 100 or move the decimal point two places to the left.

\displaystyle \frac{1.33}{100}=0.0133 

Learning Tools by Varsity Tutors