All AP Physics 1 Resources
Example Questions
Example Question #11 : Understanding Circuit Diagrams
In the circuit above, what is the voltage drop across ?
To approach this problem, note that there are no other resistors (or combinations or resistors) beyond the parallel arrangement shown, so the voltage drop across the top and the bottom is the same and equal to the voltage across the circuit, .
The voltage drop across can be found as:
Example Question #12 : Understanding Circuit Diagrams
In the circuit above, what is the current passing through ?
To approach this problem, note that there are no other resistors (or combinations or resistors) beyond the parallel arrangement shown, so the voltage drop across the top and the bottom is the same and equal to the voltage across the circuit, .
Furthermore, the current that passes through must be the same as the current that passes through .
Therefore, the current that passes through them can be found by rearranging Ohm's law, solving for current.
Example Question #13 : Understanding Circuit Diagrams
In the circuit above:
What is the current across ?
The quickest way to approach this problem is to realize that the voltage drop across is the same as the voltage drop across the combined resistances of and . Since this parallel combination is the only presence of resistance in the circuit, this voltage drop must be the total voltage of the circuit, .
Therefore, the current across is:
Example Question #14 : Understanding Circuit Diagrams
In the circuit above:
What is the current across ?
Realize that the voltage drop across the combined resistances of and must be equal to the voltage of the circuit, since the parallel combination is the only presence of resistance in the circuit. This voltage drop must be the total voltage of the circuit, .
The current across and is the same, and is given as:
Example Question #61 : Circuits
In the circuit above:
What is the total current in the circuit before it is encounters the parallel connection?
Begin by finding the resistance of the parallel connection:
The total current is then found using Ohm's law:
Example Question #11 : Understanding Circuit Diagrams
The following symbol represents what item in a circuit?
Inductor
Resistor
Battery
Capacitor
Capacitor
The symbol for a capacitor is written as a break in the circuit separated by two parallel lines of equal length as shown below. This loosely resembles the most common type of capacitor, a parallel plate capacitor.
Example Question #1 : Series And Parallel
A circuit has a resistor with a resistance of followed by three parallel branches, each holding a resistor with a resistance of . What is the total equivalent resitance of the circuit?
First, we need to calculate the equivalent resistance of the three resistors in parallel. To do this, we will use the following equation:
Now, to get the total equivalent resistance, we can simply add the two remaining values, since they are in series:
Example Question #2 : Series And Parallel
Consider the given circuit:
A voltage is applied across points A and B so that current flows from A, to R2, to B. What is the value of this voltage if the current through R2 is 4A?
First, we need to calculate the current flow through R2 without the extra voltage attached. We will need to calculate the total equivalent resistance of the circuit. Since the two resistors are in series, we can simply add them.
Then, we can use Ohm's law to calculate the current through the circuit:
Now that we have the current, we can calculate the additional current that the new voltage contributes:
There is only one resistor (R2) in the path of the new voltage, so we can calculate what that voltage needs to be to deliver the new current:
Example Question #1 : Series And Parallel
What is the effective resistance of this DC circuit?
None of the other answers
First, let's remind ourselves that the effective resistance of resistors in a series is and the effective resistance of resistors in parallel is .
Start this problem by determining the effective resistance of resistors 2, 3, and 4:
(This is because these three resistors are in series.)
Now, the circuit can be simplified to the following:
Next, we will need to determine the effective resistance of resistors and 6:
Again, the circuit can be simplified:
From here, the effective resistance of the DC circuit can be determined by calculating the effective resistance of resistors , 1, and 5:
Example Question #1 : Series And Parallel
Two lightbulbs, one graded at and one graded at are connected in series to a battery. Which one will be brighter? What if they are connected in parallel?
Series:
Parallel:
Series:
Parallel:
Series:
Parallel:
Series:
Parallel:
There's not enough information to complete this problem
Series:
Parallel:
Series:
Parallel:
The first step to figuring out this problem is to figure out how resistances of light bulb correlate to the power rating. For a resistor, the power dissipated is:
Thus, there is an inverse relationship between the resistance of the lightbulb and the power rating.
The second step is to take a look at circuit elements in series and in parallel. In series, they share the same current; in parallel they share the same voltage. Thus, for the two lightbulbs in series, the one with the higher resistance (lower wattage) will be brighter, and for a parallel configuration the one with the lower resistance (higher wattage) will be brighter.