AP Calculus AB : Limits of Functions (including one-sided limits)

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Limits Of Functions (Including One Sided Limits)

Evaluate .

Possible Answers:

Correct answer:

Explanation:

First, try evaluating the limit at the target value.

This gives us an indeterminate form, so we have to keep trying. Let's factor the polynomials:

We can cancel an , so let's do that.

Now evaluate at the target value.

The limit evaluates to .

Example Question #31 : Limits Of Functions (Including One Sided Limits)

Consider the function .  Which Reimann sum calculation would give the best approximation of the integral from  to ?

Possible Answers:

Correct answer:

Explanation:

The mid-point Reimann sum is given by this formula:

, where , and  is the number of 

intervals.  Thus, if the region from  to  is divided into twenty intervals,  and .  For ten intervals,  and .  For five internals,  and .  The higher the number of intervals, the more precise the estimation.  Thus, when  (and hence ), the estimation is the most accurate.  

Example Question #32 : Limits Of Functions (Including One Sided Limits)

Wolframalpha--plot_piecewisexxlt03-x0ltxlt213-xxgt2--2013-09-10_1008

What is the  ?

Possible Answers:

Does not exist

Correct answer:

Explanation:

For this value, the Limit Laws can be applied: 

Example Question #33 : Limits Of Functions (Including One Sided Limits)

                                                                Discgraph

True or false: In the above graph of , the value of  is 3.

Possible Answers:

False: We can't take the limit where the function isn't defined.

False: The left and right limits exist, but neither of them is three.

True: The removable discontinuity does not affect the limit, and the right and left limits evaluate to 3.

False: The left and right limits exist, but exactly one of them isn't three.

False: Both the left and right limits are three, but the regular limit isn't.

Correct answer:

True: The removable discontinuity does not affect the limit, and the right and left limits evaluate to 3.

Explanation:

Removable discontinuities don't affect the limiting process. The limit process is essentially saying "As you get arbitrarily close to , the function is getting arbitrarily close to ." As you can see, whether or not the function is defined at  is irrelevant, because we're want to look at values close to it, but never exactly at .

Graphically, we can see that the left and right limits are both three. If you trace the graph from either the left or right of , you will end up at .

By definition, if both the right and left limit evaluate to the same thing, the actual limit must agree. It's not possible for both of them to be three, but for the limit to disagree with them (at least in a two dimensional graph!)

Thus the correct answer is that the limit exists, and is three.

Example Question #32 : Limits Of Functions (Including One Sided Limits)

                                                     

Discgraph

In the above graph of , evaluate the following limits:

Possible Answers:

Correct answer:

Explanation:

A right limit is found graphically by starting at a point to the right of the specified x value and tracing along the graph to the left until you hit the specified x. Regardless of whether or not the function is defined, or perhaps if its defined, but not where your finger ends up, your finger should be at the limit. This is because limits don't concern themselves with what happens at the specified x value. For right limits, we're essentially asking "If I get arbitrarily close to  from the right, what is  getting close to?"

The same holds true for left limits, but you approach them from the other side.

In this problem,  is a right limit. Following the above method, we find that as we approach  from the right, we end up at . Similarly,  is a left limit. Approaching  from the left, we see that we arrive at .

Lastly, a regular limit is defined when both the right and left limits are defined and equal. In this case, the right limit is 5 and the left limit is 3, so the regular limit does not exist 

Example Question #32 : Limits Of Functions (Including One Sided Limits)

Find the derivative. 

y = sec (5x3)

 

 

Possible Answers:

y' = sec(5x3)tan(5x3)

y' = sec(5x3)tan(5x3)(15x2)

y' = –sec(5x3)tan(5x3)(15x2)

y' = –csc(5x3)cot(5x3)(15x2)

y' = –csc(5x3)cot(5x3)

Correct answer:

y' = sec(5x3)tan(5x3)(15x2)

Explanation:

The derivative of the function y = sec(x) is sec(x)tan(x). First take the derivative of the outside of the function: y = sec(4x3) : y' = sec(5x3)tan(5x3). Then take the derivative of the inside of the function: 5x3 becomes 15x2. So your final answer is: y' = ec(5x3)tan(5x3)15x2

Example Question #1 : Understanding The Limiting Process.

Find the slope of the tangent line to the graph of f at x = 9, given that f(x) = –x+ 5√(x)

Possible Answers:

–18 + (5/6)

–18

–18 – (5/6)

18

18 + (5/6)

Correct answer:

–18 + (5/6)

Explanation:

First find the derivative of the function.

f(x) = –x2 + 5√(x)

f'(x) = –2x + 5(1/2)x–1/2

Simplify the problem

f'(x) = –2x + (5/2x1/2)

Plug in 9. 

f'(3) = –2(9) + (5/2(9)1/2)

= –18 + 5/(6)

Example Question #33 : Limits Of Functions (Including One Sided Limits)

Find the derivative

(x + 1)/(x – 1)

Possible Answers:

(x + 1) + (x – 1)

(–2)/(x – 1)2

(–2)/(x – 1)

1

(–2)/(x + 1)2

Correct answer:

(–2)/(x – 1)2

Explanation:

Rewrite problem. 

(x + 1)/(x – 1)

Use quotient rule to solve this derivative. 

((x – 1)(1) – (x + 1)(1))/(x – 1)2

(x – 1) – x – 1)/(x – 1)2

–2/(x – 1)2

Example Question #34 : Limits Of Functions (Including One Sided Limits)

Possible Answers:

Correct answer:

Explanation:

Use the chain rule and the formula

Example Question #5 : Understanding The Limiting Process.

Find the derivative of 

Possible Answers:

Correct answer:

Explanation:

The answer is . It is easy to solve if we multiply everything together first before taking the derivative. 

Learning Tools by Varsity Tutors