All AP Calculus AB Resources
Example Questions
Example Question #5 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of u. Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2. =
3.
4.
5.
6.
7.
8.
Example Question #6 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #7 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #2 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #9 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
Example Question #9 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
8.
Example Question #11 : Antiderivatives By Substitution Of Variables
Solve the following integral using substitution:
To solve the integral, we have to simplify it by using a variable to substitute for a variable of . For this problem, we will let u replace the expression . Next, we must take the derivative of . Its derivative is . Next, solve this equation for so that we may replace it in the integral. Plug in place of and in place of into the original integral and simplify. The in the denominator cancels out the remaining in the integral, leaving behind a . We can pull the out front of the integral. Next, take the anti-derivative of the integrand and replace with the original expression, adding the constant to the answer. The specific steps are as follows:
1.
2.
3.
4.
5.
6.
7.
8.
Example Question #12 : Antiderivatives By Substitution Of Variables
This is a u-substitution integral. We need to substitute the new function, which is modifying our base function (the exponential).
, but instead of that, our problem is . We can solve this integral by completing the substitution.
Now, we can replace everything in our integrand and rewrite in terms of our new variables:
.
Remember to plug your variable back in and include the integration constant since we have an indefinite integral.
Example Question #941 : Ap Calculus Ab
This is a u-substitution integral. We need to choose the following substitutions:
Now, we can replace our original problem with our new variables:
In the last step, we need to plug in our original function and add the integration constant.
Example Question #14 : Antiderivatives By Substitution Of Variables
This is a hidden u-substitution problem! Because we have a function under our square root, we cannot just simply integrate it. Therefore, we need to choose the function under the square root as our substitution variable!
Now, let us rewrite our original equation in terms of our new variable!
.
Certified Tutor
Certified Tutor