Algebra II : Setting Up Equations

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Setting Up Equations

If Bob's age is \displaystyle x years old and Jack is \displaystyle 4 more than \displaystyle 2 times Bob's age, then express Jack's age in terms of \displaystyle x.

Possible Answers:

\displaystyle x

\displaystyle 4x

\displaystyle 4x+2

\displaystyle 2x

\displaystyle 2x+4

Correct answer:

\displaystyle 2x+4

Explanation:

Take every word and translate into math. 

\displaystyle 4 more than means that you need to add \displaystyle 4 to something. 

\displaystyle 2 times something means that you need to multiply \displaystyle 2 to Bob's age which is \displaystyle x

Now we can combine them to have an expression of \displaystyle 2x+4.

Example Question #12 : Setting Up Equations

There are \displaystyle 100 marbles in a jar. There are \displaystyle 4 types of color: red, blue, green and yellow. There are \displaystyle 40 red marbles, \displaystyle 30 blue marbles, \displaystyle 15 green marbles. Find an equation to represent the number of yellow marbles.

Possible Answers:

\displaystyle r+g+b+y=100

\displaystyle 40+30+15+100=y

\displaystyle y-40-30-15=100

\displaystyle 40-30+15+y=100

\displaystyle y=15

Correct answer:

\displaystyle y=15

Explanation:

We have \displaystyle 3 known values and \displaystyle 1 unknown value. We have a total and that these \displaystyle 4 colors add up to \displaystyle 100.

Let's represent the colors with variables corresponding to the first letter of the color. \displaystyle r+g+b+y=100.

Now, plug in the values that are known. Final answer is \displaystyle 40+30+15+y=100

To simplify we add the constants which results in:

\displaystyle 85+y=100 \rightarrow y=15

Example Question #13 : Setting Up Equations

Express as an equation.

Difference between \displaystyle 5 times \displaystyle x and the quotient of \displaystyle 30 and \displaystyle 7x is \displaystyle 2 more than \displaystyle 4 times \displaystyle x

Possible Answers:

\displaystyle 5x-\frac{7x}{30}=2x+4

\displaystyle \frac{30}{7x}-5x=4x+2

\displaystyle 5x-\frac{30}{7x}=4x+2

\displaystyle 5x-4x+2=\frac{30}{7x}

\displaystyle \frac{30}{7x}-5x=2x+4

Correct answer:

\displaystyle 5x-\frac{30}{7x}=4x+2

Explanation:

Take every word and translate into math. What a difference means, is that \displaystyle a is the first number subtracting \displaystyle b.

The \displaystyle a part is \displaystyle 5 times something means that you need to multiply \displaystyle 5 to something which is \displaystyle x.

The \displaystyle b part is quotient. 

Anytime you take a quotient of \displaystyle a and \displaystyle b\displaystyle a is the in the numerator and \displaystyle b is in the denominator. Therefore the expression is \displaystyle \frac{30}{7x}

Anytime you see "is" means equal.  

\displaystyle 2 more than means that you need to add \displaystyle 2 to something.

That something is \displaystyle 4 multipled by \displaystyle x or \displaystyle 4x.

Let's just combine them to have an expression of \displaystyle 5x-\frac{30}{7x}=4x+2

Example Question #14 : Setting Up Equations

Jon needs to make four monthly deposits. The first month, he deposits \displaystyle x dollars. Each month after he adds \displaystyle 30 dollars to the previous month's deposit. Find an equation to solve for \displaystyle x if the total amount of money deposited for the four months is \displaystyle 900.

Possible Answers:

\displaystyle 4x+180=900

\displaystyle 4x+30=900

\displaystyle x+x+30+x+30+x+30=900

\displaystyle x+x+30=900

\displaystyle 4x+60=900

Correct answer:

\displaystyle 4x+180=900

Explanation:

Let's translate into math equations.

First month is \displaystyle x. Then for the next month, he adds \displaystyle 30 to the previous month or \displaystyle x+30. Then, for the next month, he adds another \displaystyle 30 to the previous month which was \displaystyle x+30. By adding another \displaystyle 30, this month becomes \displaystyle x+60. For the fourth month, it's just another \displaystyle 30  added to the previous month which was \displaystyle x+60. The fourth month becomes \displaystyle x+90.

With the total given, lets combine the expressions to get \displaystyle x+x+30+x+60+x+90=900.

Simplifying this we get:

\displaystyle 4x+180=900

Example Question #11 : Setting Up Equations

Express as an equation.

The sum of \displaystyle x and \displaystyle 3 is \displaystyle 5

Possible Answers:

\displaystyle 5+3=x

\displaystyle x+3=5

\displaystyle x+3>2

\displaystyle x+3>5

\displaystyle x+5=3

Correct answer:

\displaystyle x+3=5

Explanation:

Take every word and translate into math. The sum of something means adding. So that would be \displaystyle x+3. Is means equals something. Putting it all together, we get \displaystyle x+3=5

Example Question #12 : Setting Up Equations

Express as an equation.

The difference between \displaystyle 5 and \displaystyle x is \displaystyle 4

Possible Answers:

\displaystyle 5-x=4

\displaystyle x-4=5

\displaystyle 5-x>4

\displaystyle x-5=4

\displaystyle 5-4=x

Correct answer:

\displaystyle 5-x=4

Explanation:

Take every word and translate into math. Difference means subtracting. So we are subtracting \displaystyle 5 and \displaystyle x. Is means equal something. Putting it all together, we have \displaystyle 5-x=4.

Example Question #13 : Setting Up Equations

Express as an equation. The product of \displaystyle x and \displaystyle 3 is the sum of \displaystyle y and \displaystyle 7

Possible Answers:

\displaystyle 3(y+7)=x

\displaystyle 3x=y+7

\displaystyle 3y=x+7

\displaystyle xy=21

\displaystyle 3(x+7)=y

Correct answer:

\displaystyle 3x=y+7

Explanation:

Take every word and translate into math. The product of something means multiplying. So we have \displaystyle 3x. The sum of something means adding. So that would be \displaystyle y+7. Is means equals something. Putting it together, we have \displaystyle 3x=y+7

Example Question #14 : Setting Up Equations

Express as an equation. The quotient of \displaystyle x and \displaystyle 5 is the difference of \displaystyle a and \displaystyle 7 times sum of \displaystyle b and \displaystyle 3.

Possible Answers:

\displaystyle \frac{5}{x}=a-7(b+3)

\displaystyle \frac{x}{5}=b-7(a+3)

\displaystyle \frac{x}{5}=a-7(b+3)

\displaystyle \frac{x}{5}=7(b+3)-a

\displaystyle \frac{x}{5}=a-7b+3

Correct answer:

\displaystyle \frac{x}{5}=a-7(b+3)

Explanation:

Take every word and translate into math. Quotient means dividing, so we have \displaystyle \frac{x}{5}. When it's \displaystyle a and \displaystyle b\displaystyle a will always be at the numerator of the fraction. Is means equal something. Difference is subtracting and we are subtracting \displaystyle a with \displaystyle 7 times sum of \displaystyle b and \displaystyle 3. Times means multiplying and sum means addition. We are multiplying \displaystyle 7 with \displaystyle (b+3). There must be parentheses as the sum of \displaystyle b and \displaystyle 3 is an expression. Putting it all together, we get \displaystyle \frac{x}{5}=a-7(b+3)

Example Question #15 : Setting Up Equations

Express as an equation.

The square root of \displaystyle x is the sum of \displaystyle a and \displaystyle b squared.

Possible Answers:

\displaystyle \sqrt{x}=a+b^2

\displaystyle x^2=a+b^2

\displaystyle \sqrt{x}=(a+b)^2

\displaystyle \sqrt{x}=a^2+b^2

\displaystyle x=a+b

Correct answer:

\displaystyle \sqrt{x}=(a+b)^2

Explanation:

Take every word and translate into math. Square root means using a radical sign. So we have \displaystyle \sqrt{x}. Is means equal something. Next, sum is addition so we have \displaystyle a+b. Since it's squared, we have the whole thing in parentheses raised to the second power like so: \displaystyle (a+b)^2. It is tempting to think it's \displaystyle a+b^2 but if it was, then it should say sum of \displaystyle a and \displaystyle b square. So final answer is \displaystyle \sqrt{x}=(a+b)^2

Example Question #11 : Setting Up Equations

Solve for \displaystyle a in the following equation: \displaystyle 2a+9=23

Possible Answers:

\displaystyle a=14

\displaystyle a=2.5

\displaystyle a=7

\displaystyle a=6

\displaystyle a=2

Correct answer:

\displaystyle a=7

Explanation:

Starting with the equation \displaystyle 2a+9=23, you want to collect like terms.

Put all of the numbers on one side, and leave only the variable on the other side.

The first step is to subtract \displaystyle 9 from both sides.

You get \displaystyle 2a=14.

The next step is to divide both sides by \displaystyle 2 to get the final answer, \displaystyle a=7.

Learning Tools by Varsity Tutors