Algebra II : Mathematical Relationships and Basic Graphs

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1461 : Mathematical Relationships And Basic Graphs

Simplify.

\displaystyle \sqrt{5}\cdot\sqrt{2}

Possible Answers:

\displaystyle 5\sqrt{2}

\displaystyle 2\sqrt{5}

\displaystyle 10

\displaystyle \sqrt{10}

\displaystyle \sqrt{7}

Correct answer:

\displaystyle \sqrt{10}

Explanation:

When multiplying radicals, you can combine them and multiply the numbers inside the radical.

\displaystyle \sqrt{5}\cdot\sqrt{2}=\sqrt{5\cdot2}=\sqrt{10}

 

Example Question #25 : Multiplying And Dividing Radicals

Simplify.

\displaystyle \sqrt{6}\cdot3\sqrt{6}

Possible Answers:

\displaystyle 4\sqrt{6}

\displaystyle 12

\displaystyle 18

\displaystyle 4

\displaystyle 6\sqrt{3}

Correct answer:

\displaystyle 18

Explanation:

\displaystyle \sqrt{6}\cdot3\sqrt{6} When multiplying radicals, you can combine them and multiply the numbers inside the radical. NUmbers outside the radical are also multiplied.

\displaystyle 3\sqrt{36} We can simplify this.

\displaystyle 3\cdot6=18

Example Question #25 : Multiplying And Dividing Radicals

Simplify.

\displaystyle \sqrt{6}\cdot\sqrt{3}

Possible Answers:

\displaystyle \sqrt{18}

\displaystyle 18

\displaystyle 3\sqrt{2}

\displaystyle 9\sqrt{2}

\displaystyle 2\sqrt{3}

Correct answer:

\displaystyle 3\sqrt{2}

Explanation:

\displaystyle \sqrt{6}\cdot\sqrt{3} When multiplying radicals, you can combine them and multiply the numbers inside the radical.

\displaystyle \sqrt{18} We can simplify this. Lets find a perfect square.

\displaystyle \sqrt{18}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}

Example Question #25 : Multiplying And Dividing Radicals

Simplify.

\displaystyle \frac{\sqrt{24}}{4}

Possible Answers:

\displaystyle \frac{\sqrt{24}}4{}

\displaystyle 6

\displaystyle \frac{\sqrt{6}}{2}

\displaystyle \frac{\sqrt{2}}2{}

\displaystyle \frac{\sqrt{6}}{4}

Correct answer:

\displaystyle \frac{\sqrt{6}}{2}

Explanation:

When dividing radicals with an integer, let's simplify the radical. We need to find a perfect square. 

\displaystyle \frac{\sqrt{24}}{4}=\frac{\sqrt{4}\cdot\sqrt{6}}{4}=\frac{2\sqrt{6}}{4}. We can reduce.

\displaystyle \frac{2\sqrt{6}}{4}=\frac{\sqrt{6}}{2}

 

Example Question #26 : Multiplying And Dividing Radicals

Simplify.

\displaystyle \frac{\sqrt{48}}{16}

Possible Answers:

\displaystyle \frac{\sqrt{3}}4{}

\displaystyle 2\sqrt{3}

\displaystyle \frac{\sqrt{3}}{2}

\displaystyle 4\sqrt{3}

\displaystyle \sqrt{3}

Correct answer:

\displaystyle \frac{\sqrt{3}}4{}

Explanation:

When dividing radicals with an integer, let's simplify the radical. We need to find a perfect square. 

\displaystyle \frac{\sqrt{48}}{16}=\frac{\sqrt{16}\cdot\sqrt{3}}{16}=\frac{4\sqrt{3}}{16}. We can reduce.

\displaystyle \frac{4\sqrt{3}}{16}=\frac{\sqrt{3}}{4}

Example Question #1462 : Mathematical Relationships And Basic Graphs

Simplify.

\displaystyle \frac{\sqrt{7}}{\sqrt{5}}

Possible Answers:

\displaystyle \frac{5}{7}

\displaystyle \frac{7\sqrt{5}}{5}

\displaystyle \frac{7}{5}

\displaystyle \frac{\sqrt{35}}{5}

\displaystyle \frac{5\sqrt{7}}{7}

Correct answer:

\displaystyle \frac{\sqrt{35}}{5}

Explanation:

When dividing radicals, we multiply top and bottom by the bottom radical to ensure our denominator is an integer.

\displaystyle \frac{\sqrt{7}}{\sqrt{5}}=\frac{\sqrt{7}\cdot\sqrt{5}}{\sqrt{5}\cdot\sqrt{5}}=\frac{\sqrt{35}}{5}. This can't be simplified and is our answer.

Example Question #1463 : Mathematical Relationships And Basic Graphs

Simplify.

\displaystyle \frac{3}{\sqrt{3}}

Possible Answers:

\displaystyle \frac{\sqrt{3}}{3}

\displaystyle 9

\displaystyle 3

\displaystyle 3\sqrt{3}

\displaystyle \sqrt{3}

Correct answer:

\displaystyle \sqrt{3}

Explanation:

When dividing radicals, we multiply top and bottom by the bottom radical to ensure our denominator is an integer.

\displaystyle \frac{3}{\sqrt{3}}=\frac{3\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{3\sqrt{3}}{3}=\sqrt{3}

Example Question #221 : Radicals

Simplify.

\displaystyle \frac{2}{1+\sqrt{3}}

Possible Answers:

\displaystyle 1-\sqrt{3}

\displaystyle \frac{2}{1-\sqrt{3}}

\displaystyle \frac{1-\sqrt{3}}{2}

\displaystyle -1+\sqrt{3}

\displaystyle -2+2\sqrt{3}

Correct answer:

\displaystyle -1+\sqrt{3}

Explanation:

\displaystyle \frac{2}{1+\sqrt{3}} To get rid of the radical in the denominator, we need to multiply top and bottom by the conjugate which is the opposite sign of the radical expression. This would be \displaystyle 1-\sqrt{3}.

\displaystyle \frac{2}{1+\sqrt{3}}\cdot\frac{1-\sqrt{3}}{1-\sqrt{3}}=\frac{2-2\sqrt{3}}{1-3}=\frac{2-2\sqrt{3}}{-2} Remember to FOIL out when multiplying out the denominators. Now, with our answer, we can factor out a \displaystyle -2.

\displaystyle \frac{2-2\sqrt{3}}{-2}=\frac{-2(-1+\sqrt{3})}{-2}=-1+\sqrt{3}

 

Example Question #4131 : Algebra Ii

Simplify.

\displaystyle \frac{3}{1-\sqrt{2}}

Possible Answers:

\displaystyle -3-3\sqrt{2}

\displaystyle 3-3\sqrt{2}

\displaystyle \frac{-3-3\sqrt{2}}{2}

\displaystyle 3+3\sqrt{2}

\displaystyle \frac{3+3\sqrt{2}}{2}

Correct answer:

\displaystyle -3-3\sqrt{2}

Explanation:

\displaystyle \frac{3}{1-\sqrt{2}} To get rid of the radical in the denominator, we need to multiply top and bottom by the conjugate which is the opposite sign of the radical expression. This would be \displaystyle 1+\sqrt{2}.

\displaystyle \frac{3}{1-\sqrt{2}}\cdot\frac{1+\sqrt{2}}{1+\sqrt{2}}=\frac{3+3\sqrt{2}}{1-2}=\frac{3+3\sqrt{2}}{-1} Remember to use FOIL when multiplying out the denominators. Now, with out answer, we can distribute out the \displaystyle -1

\displaystyle \frac{3+3\sqrt{2}}{-1}=-3-3\sqrt{2}

Example Question #35 : Multiplying And Dividing Radicals

Multiply:\displaystyle 6\sqrt{3}*2\sqrt{8}

Possible Answers:

\displaystyle 12\sqrt{6}

\displaystyle 12\sqrt{24}

Cannot combine these radicals

\displaystyle 24\sqrt{6}

None of these

Correct answer:

\displaystyle 24\sqrt{6}

Explanation:

\displaystyle 6\sqrt{3}*2\sqrt{8}

Multiply the outer numbers first:

\displaystyle 12(\sqrt{3}*\sqrt{8})

Combine radicals:

\displaystyle 12\sqrt{24}

Simplify the radical:

\displaystyle 12\sqrt{6*4}

\displaystyle \mathbf{24\sqrt{6}}

Learning Tools by Varsity Tutors