Algebra II : Radicals

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1581 : Mathematical Relationships And Basic Graphs

Solve the equation:  \displaystyle \sqrt{3-3x}+6 =10

Possible Answers:

\displaystyle -\frac{7}{3}

\displaystyle -\frac{13}{3}

\displaystyle -\frac{7}{3}

\displaystyle -\frac{19}{3}

Correct answer:

\displaystyle -\frac{13}{3}

Explanation:

Subtract six from both sides.

\displaystyle \sqrt{3-3x}+6-6 =10-6

\displaystyle \sqrt{3-3x}=4

Square both sides.

\displaystyle (\sqrt{3-3x})^2=4^2

\displaystyle 3-3x=16

Add \displaystyle 3x on both sides.

\displaystyle 3-3x+3x=16+3x

\displaystyle 3=16+3x

Subtract 16 from both sides.

\displaystyle 3-16=16+3x-16

\displaystyle -13 = 3x

Divide by three on both sides.

\displaystyle \frac{-13 }{3}=\frac{ 3x}{3}

The answer is:  \displaystyle -\frac{13}{3}

Example Question #31 : Solving And Graphing Radicals

Solve the equation:  \displaystyle -\sqrt{-9x}-3 =- 8

Possible Answers:

\displaystyle -\frac{4}{3}

\displaystyle -\frac{31}{9}

\displaystyle -\frac{5}{9}

\displaystyle -\frac{25}{9}

Correct answer:

\displaystyle -\frac{25}{9}

Explanation:

Add three on both sides.

\displaystyle -\sqrt{-9x}-3 +3=- 8+3

\displaystyle -\sqrt{-9x} = -5

Divide by negative one to isolate the radical.

\displaystyle \frac{-\sqrt{-9x}}{-1} = \frac{-5}{-1}

The equation becomes:  \displaystyle \sqrt{-9x} =5

Square both sides.

\displaystyle (\sqrt{-9x})^2 =5^2

\displaystyle -9x=25

Divide by negative nine on both sides.

\displaystyle \frac{-9x}{-9}=\frac{25}{-9}

The answer is:  \displaystyle -\frac{25}{9}

Example Question #33 : Solving Radical Equations

Solve the equation:  \displaystyle \sqrt{5x+3}+16= 25

Possible Answers:

\displaystyle 23

\displaystyle 412

\displaystyle \frac{1678}{5}

\displaystyle \frac{78}{5}

\displaystyle \frac{84}{5}

Correct answer:

\displaystyle \frac{78}{5}

Explanation:

Solve by first subtracting 16 on both sides.

\displaystyle \sqrt{5x+3}+16-16= 25-16

The equation becomes:

\displaystyle \sqrt{5x+3} =9

Square both sides.

\displaystyle (\sqrt{5x+3})^2 =9^2

\displaystyle 5x+3=81

Subtract three on both sides.

\displaystyle 5x+3-3=81-3

\displaystyle 5x=78

Divide by five on both sides.

\displaystyle \frac{5x}{5}=\frac{78}{5}

The answer is:  \displaystyle \frac{78}{5}

Example Question #1592 : Mathematical Relationships And Basic Graphs

Solve the equation:  \displaystyle \sqrt[3]{3x}+6=8

Possible Answers:

\displaystyle \frac{3}{2}

\displaystyle 6

\displaystyle 2

\displaystyle 8

\displaystyle \frac{8}{3}

Correct answer:

\displaystyle \frac{8}{3}

Explanation:

Subtract six from both sides.

\displaystyle \sqrt[3]{3x}+6-6=8-6

Simplify both sides.

\displaystyle \sqrt[3]{3x} = 2

Cube both sides to eliminate the cube root.

\displaystyle 3x= 2^3

\displaystyle 3x=8

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{8}{3}

The answer is:  \displaystyle \frac{8}{3}

Example Question #352 : Radicals

Solve the equation:  \displaystyle \sqrt[4]{3(x+1)}+16=18

Possible Answers:

\displaystyle \frac{26}{3}

\displaystyle \frac{26}{5}

\displaystyle 5

\displaystyle \frac{13}{3}

Correct answer:

\displaystyle \frac{13}{3}

Explanation:

Simplify by first subtracting 16 on both sides.

\displaystyle \sqrt[4]{3(x+1)}+16-16=18-16

\displaystyle \sqrt[4]{3(x+1)}=2

Raise both sides by the fourth power.

\displaystyle (\sqrt[4]{3(x+1)})^4=2^4

\displaystyle 3(x+1)=16

Expand the binomial.

\displaystyle 3x+3=16

Subtract three from both sides.

\displaystyle 3x+3-3=16-3

\displaystyle 3x=13

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{13}{3}

The answer is:  \displaystyle \frac{13}{3}

Example Question #32 : Solving And Graphing Radicals

Solve the equation:  \displaystyle \sqrt[3]{9-x} = 3

Possible Answers:

\displaystyle 27

\displaystyle 18

\displaystyle -36

\displaystyle -18

Correct answer:

\displaystyle -18

Explanation:

To eliminate the radical, we will need to cube both sides of the equation.

\displaystyle (\sqrt[3]{9-x})^3 = 3^3

The equation becomes:

\displaystyle 9-x = 27

Add \displaystyle x on both sides.

\displaystyle 9-x+(x) = 27+(x)

\displaystyle 9=27+x

Subtract 27 from both sides.

\displaystyle 9-27=27+x-27

\displaystyle x=-18

This answer is valid after re-substituting back to the original equation.

The answer is:  \displaystyle -18

Example Question #41 : Solving Radical Equations

Solve the equation:  \displaystyle \sqrt{5x-4} +7 = 10

Possible Answers:

\displaystyle \frac{293}{5}

\displaystyle 57

\displaystyle \frac{13}{5}

\displaystyle \frac{26}{5}

Correct answer:

\displaystyle \frac{13}{5}

Explanation:

Subtract seven on both sides.

\displaystyle \sqrt{5x-4} +7 -7= 10-7

\displaystyle \sqrt{5x-4} =3

Square both sides.  This will eliminate the radical on the left side.

\displaystyle (\sqrt{5x-4} )^2=3^2

\displaystyle 5x-4 = 9

Add four on both sides.

\displaystyle 5x-4 +4= 9+4

\displaystyle 5x=13

Divide by five on both sides.

\displaystyle \frac{5x}{5}=\frac{13}{5}

The answer is:  \displaystyle \frac{13}{5}

Example Question #41 : Solving Radical Equations

Solve the equation:  \displaystyle 3\sqrt[3]{4x-3} -3= 1

Possible Answers:

\displaystyle \frac{43}{36}

\displaystyle \frac{919}{108}

\displaystyle -\frac{17}{108}

\displaystyle \frac{145}{108}

\displaystyle \frac{41}{96}

Correct answer:

\displaystyle \frac{145}{108}

Explanation:

Add three on both sides.

\displaystyle 3\sqrt[3]{4x-3} -3+3= 1+3

\displaystyle 3\sqrt[3]{4x-3}=4

Divide by three on both sides.

\displaystyle \frac{3\sqrt[3]{4x-3}}{3}=\frac{4}{3}

\displaystyle \sqrt[3]{4x-3}=\frac{4}{3}

Cube both sides to eliminate the radical.  Simplify both sides.

\displaystyle (\sqrt[3]{4x-3})^3=(\frac{4}{3})^3

\displaystyle 4x-3 = \frac{64}{27}

Add three on both sides.  This is the same as adding \displaystyle \frac{81}{27} on the right side.

\displaystyle 4x-3+3=\frac{64}{27}+\frac{81}{27}

\displaystyle 4x= \frac{145}{27}

Divide by four on both sides.  This is similar to multiplying one fourth on both sides and will isolate the x-variable on the left.

\displaystyle 4x\cdot \frac{1}{4}= \frac{145}{27}\cdot \frac{1}{4}

\displaystyle x=\frac{145}{108}

The answer is:  \displaystyle \frac{145}{108}

Example Question #1591 : Mathematical Relationships And Basic Graphs

Solve the equation:  \displaystyle \sqrt{6x-3}-28 = 30

Possible Answers:

\displaystyle \frac{3367}{6}

\displaystyle \frac{7}{6}

\displaystyle \frac{1}{6}

\displaystyle \frac{3361}{6}

Correct answer:

\displaystyle \frac{3367}{6}

Explanation:

In order to solve this equation, first add 28 on both sides.

\displaystyle \sqrt{6x-3}-28+28 = 30+28

\displaystyle \sqrt{6x-3}=58

Square both sides.

\displaystyle (\sqrt{6x-3})^2=58^2

\displaystyle 6x-3=3364

Add three on both sides.

\displaystyle 6x-3+3=3364+3

\displaystyle 6x=3367

Divide by six on both sides.

\displaystyle \frac{6x}{6}=\frac{3367}{6}

The answer is:  \displaystyle \frac{3367}{6}

Example Question #351 : Radicals

Solve the equation:  \displaystyle \sqrt[3]{6x-2}= 4

Possible Answers:

\displaystyle \frac{31}{3}

\displaystyle 3

\displaystyle 18

\displaystyle 11

Correct answer:

\displaystyle 11

Explanation:

Cube both sides.

\displaystyle (\sqrt[3]{6x-2})^3= 4^3

This will eliminate the radical.

\displaystyle 6x-2= 64

Add two on both sides.

\displaystyle 6x-2+2= 64+2

\displaystyle 6x=66

Divide by six on both sides.

\displaystyle \frac{6x}{6}=\frac{66}{6}

The answer is:  \displaystyle 11

Learning Tools by Varsity Tutors