Algebra II : Understanding Exponents

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #12 : Write And Evaluate Numerical Expressions With Exponents: Ccss.Math.Content.6.Ee.A.1

Expand:

\(\displaystyle 18^8\)

 

Possible Answers:

\(\displaystyle 18*8\)

\(\displaystyle 18*18*18*18*18*18*18*18\)

\(\displaystyle 18*18*18*18*8*8*8*8\)

\(\displaystyle 18*8*8*18\)

\(\displaystyle 8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8\)

Correct answer:

\(\displaystyle 18*18*18*18*18*18*18*18\)

Explanation:

When expanding an exponent, we must multiply the base by itself for the number of indicated by the exponential value.

\(\displaystyle 18^8=18*18*18*18*18*18*18*18\)

Example Question #241 : Understanding Exponents

Evaluate: 

\(\displaystyle 15^3\)

Possible Answers:

\(\displaystyle 2575\)

\(\displaystyle 3375\)

\(\displaystyle 1515\)

\(\displaystyle 2525\)

\(\displaystyle 1025\)

Correct answer:

\(\displaystyle 3375\)

Explanation:

When expanding an exponent, we must multiply the base by itself for the number of indicated by the exponential value.

\(\displaystyle 15^3\) is expanded out to the following:

\(\displaystyle 15*15*15\)

The product is \(\displaystyle 3375\).

Example Question #243 : Understanding Exponents

Convert \(\displaystyle 8^{12}\) to base \(\displaystyle 4\).

Possible Answers:

\(\displaystyle 4^{16}\)

\(\displaystyle 4^{18}\)

\(\displaystyle 4^{20}\)

\(\displaystyle 4^{12}\)

\(\displaystyle 4^{24}\)

Correct answer:

\(\displaystyle 4^{18}\)

Explanation:

First, we know that \(\displaystyle 8=2^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

 \(\displaystyle (2^3)^{12}=2^{36}\)

Second, we know that \(\displaystyle 4=2^2\)

By applying the same rule, we will get the following expression:

\(\displaystyle (2^2)^x=2^{36}\)

Therefore:

\(\displaystyle 2x=36\) and \(\displaystyle x=18\) 

The answer is \(\displaystyle 4^{18}\).

Example Question #712 : Mathematical Relationships And Basic Graphs

Change \(\displaystyle 27^6\) to base \(\displaystyle 3\).

Possible Answers:

\(\displaystyle 3^{27}\)

\(\displaystyle 3^{9}\)

\(\displaystyle 3^{18}\)

\(\displaystyle 3^{12}\)

\(\displaystyle 3^{15}\)

Correct answer:

\(\displaystyle 3^{18}\)

Explanation:

First, we know that \(\displaystyle 27=3^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

\(\displaystyle (3^3)^6\) or \(\displaystyle 3^{18}\)

Example Question #3371 : Algebra Ii

Convert \(\displaystyle 8^{12}\) to base \(\displaystyle 2\).

Possible Answers:

\(\displaystyle 2^{36}\)

\(\displaystyle 2^{18}\)

\(\displaystyle 2^{24}\)

\(\displaystyle 2^{60}\)

\(\displaystyle 2^{40}\)

Correct answer:

\(\displaystyle 2^{36}\)

Explanation:

First, we know that \(\displaystyle 8=2^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

\(\displaystyle (2^3)^{12}=2^{36}\)

Example Question #244 : Understanding Exponents

Convert \(\displaystyle 16^9\) to base \(\displaystyle 8\).

Possible Answers:

\(\displaystyle 8^9\)

\(\displaystyle 8^{13}\)

\(\displaystyle 8^{16}\)

\(\displaystyle 8^{12}\)

\(\displaystyle 8^{24}\)

Correct answer:

\(\displaystyle 8^{12}\)

Explanation:

First, we know that \(\displaystyle 16=2^4\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

 \(\displaystyle (2^4)^{9}=2^{36}\)

Second, we know that \(\displaystyle 8=2^3\)

By applying the same rule, we will get the following expression:

\(\displaystyle (2^3)^x=2^{36}\)

Therefore:

\(\displaystyle 3x=36\)

Simplify and solve for \(\displaystyle x\).

\(\displaystyle x=12\)

The answer is \(\displaystyle 8^{12}\).

Example Question #242 : Understanding Exponents

Expand \(\displaystyle 11^4\)

Possible Answers:

\(\displaystyle 11^4*11^4*11^4*11^4\)

\(\displaystyle 11*4\)

\(\displaystyle 4*4*4*11*11*11\)

\(\displaystyle 11*11*11*11\)

\(\displaystyle 4*4*4*4*4*4*4*4*4*4*4\)

Correct answer:

\(\displaystyle 11*11*11*11\)

Explanation:

When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle 11^4=11*11*11*11\)

Example Question #243 : Understanding Exponents

Expand \(\displaystyle 2^7\)

Possible Answers:

\(\displaystyle 2*2*2*2*2*2*2\)

\(\displaystyle 2^7*2^7*2^7*2^7*2^7*2^7*2^7\)

\(\displaystyle 2*7\)

\(\displaystyle 7*7\)

\(\displaystyle 2*2*7*7\)

Correct answer:

\(\displaystyle 2*2*2*2*2*2*2\)

Explanation:

When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle 2^7=\)\(\displaystyle 2*2*2*2*2*2*2\)

Example Question #246 : Understanding Exponents

Expand \(\displaystyle \frac{1}{2}^8\)

Possible Answers:

\(\displaystyle 8*8*8*8*8*8*8*8\)

\(\displaystyle \frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}\)

\(\displaystyle \frac{1}{2}^8*8\)

\(\displaystyle \frac{1}{2}*\frac{1}{2}*8*8\)

\(\displaystyle \frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8*\frac{1}{2}^8\)

Correct answer:

\(\displaystyle \frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}\)

Explanation:

 When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle \frac{1}{2}^8=\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}*\frac{1}{2}\)

Example Question #244 : Understanding Exponents

Expand \(\displaystyle (-4)^3\)

Possible Answers:

\(\displaystyle -4*3\)

\(\displaystyle 3*3*3*3\)

\(\displaystyle (-4)^3*(-4)^3*(-4)^3\)

\(\displaystyle -4*-4*-4\)

\(\displaystyle 4*4*4\)

Correct answer:

\(\displaystyle -4*-4*-4\)

Explanation:

 When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle (-4)^3=-4*-4*-4\)

Learning Tools by Varsity Tutors