Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #58 : Transformations Of Linear Functions

Translate the equation \displaystyle y=3(5x-3) down six units.  What is the new equation?

Possible Answers:

\displaystyle y=15x-8

\displaystyle y=15x-27

\displaystyle y=5x+27

\displaystyle y=15x+27

\displaystyle y=15x-15

Correct answer:

\displaystyle y=15x-15

Explanation:

Use distribution to simplify the equation.

\displaystyle y=3(5x)-3(3)

The equation in slope-intercept form is:  \displaystyle y=15x-9

Shift the equation down six units means subtract the y-intercept by six.

\displaystyle y=15x-9-6

The answer is:  \displaystyle y=15x-15

Example Question #59 : Transformations Of Linear Functions

For the function \displaystyle f(x)=7x we will define a linear transformation \displaystyle g(x) such that \displaystyle g(x)=f(x+1)+3.  Find the slope and y-intercept of the inverse function \displaystyle g^{-1}(x) of \displaystyle g(x)

Possible Answers:

 \displaystyle m=\frac{1}{7}  

 \displaystyle b=-\frac{10}{7}



 \displaystyle m=\frac{7}{3}  

 \displaystyle b=\frac{11}{10}

 

 \displaystyle m=7  

 \displaystyle b=10



 \displaystyle m=1  

 \displaystyle b=3



\displaystyle m = \frac{3}{4}

\displaystyle b = -10

Correct answer:

 \displaystyle m=\frac{1}{7}  

 \displaystyle b=-\frac{10}{7}



Explanation:

Use the given function \displaystyle f(x)=7x to find the linear transformation defined by \displaystyle g(x)=f(x+1)+3.  

 

First understand that in order to write \displaystyle g(x) we have to take our function \displaystyle f(x)=7x and evaluate it for \displaystyle x+1 and then add \displaystyle 3 to the result. 

 

\displaystyle f(x+1)=7(x+1) = 7x+7

 

Adding \displaystyle 3

\displaystyle g(x)=7x+10

 

Now that we have \displaystyle g(x), compute the inverse \displaystyle g^{-1}(x). Conventionally we replace the \displaystyle g(x) notation with the \displaystyle y notation and solve for \displaystyle x.

 \displaystyle y = 7x+10

 \displaystyle y-10=7x

 

Therefore, 

\displaystyle x \: \: \: =\: \: \: \frac{y-10}{7}

\displaystyle x=\frac{1}{7}y-\frac{10}{7} 

 

At this point it's conventional to interchange \displaystyle x and \displaystyle y to write the inverse since we want to express it as a function of \displaystyle x.

 

\displaystyle y =\frac{1}{7}x-\frac{10}{7}

 

\displaystyle g^{-1}(x)=\frac{1}{7}x-\frac{10}{7}

 

Therefore the slope is \displaystyle \frac{1}{7} and the y-intercept is \displaystyle -\frac{10}{7}

 

 

 

 

 

Example Question #59 : Transformations Of Linear Functions

Transform the equation into slope-intercept form.

\displaystyle 4x+8y+2=0

Possible Answers:

 \displaystyle y=-\frac{1}{2}x-\frac{1}{4}

\displaystyle x=-\frac{1}{2}y-\frac{1}{4}

\displaystyle y=2x-4

\displaystyle y=-2x-4

\displaystyle x=-2y-4

Correct answer:

 \displaystyle y=-\frac{1}{2}x-\frac{1}{4}

Explanation:

In order to take an action from standard form to slope-intercept form you want to make it of the form:

\displaystyle y=m*x+B

where \displaystyle B is the y-intercept (constant/number without a variable attached to it)

\displaystyle m is the slope and coefficient of the \displaystyle x term

and the equation is set equal to \displaystyle Y making it easier to plot graphically.

Given:

\displaystyle 4x+8y+2=0 

I. Isolate \displaystyle Y on one side of the equation. This is done by shifting either \displaystyle Y over to the other side of equation or the \displaystyle x term and the constant to the other side of the equation. It is generally preferable to shift it to make so the \displaystyle Y term is positive by itself to simply operations and sign mixups. So in this case both \displaystyle 4x and \displaystyle 2 would be subtracted from both sides of the equation leaving:

\displaystyle 8y=-4x-2

II. Now that \displaystyle Y is isolated by itself you want to simplify the equation so there is no coefficient other than \displaystyle 1 attached to \displaystyle Y, so in this case it'd mean dividing both sides by \displaystyle 8  leaving:

\displaystyle y=-\frac{4}{8}x-\frac{2}{8}

III. Simplify the expression. If you are given fractions that are divisible by each other they can be simplified.

In the case \displaystyle \frac{4}{8}  is simplified to \displaystyle \frac{1}{2} and \displaystyle \frac{2}{8}  is simplified to \displaystyle \frac{1}{4} leaving the final answer of:

\displaystyle y=-\frac{1}{2}x-\frac{1}{4} 

Example Question #921 : Algebra Ii

Write a quadratic equation having \displaystyle \left ( -3,2 \right ) as the vertex (vertex form of a quadratic equation).

Possible Answers:

\displaystyle \left ( x - 3 \right )^{2}

\displaystyle \left ( x + 3 \right )^{2} + 2

\displaystyle \left ( x + 3 \right )^{2}

\displaystyle \left ( x + 3 \right )^{2} + 11

\displaystyle \left ( x - 3 \right )^{2} -2

Correct answer:

\displaystyle \left ( x + 3 \right )^{2} + 2

Explanation:

The vertex form of a quadratic equation is given by

\displaystyle \left ( x - h \right )^{2} + k

Where the vertex is located at \displaystyle \left ( h,k \right )

giving us \displaystyle \left ( x + 3 \right )^{2} +2.

Example Question #921 : Algebra Ii

What are the \displaystyle x-intercepts of the equation?

\displaystyle y=\frac{x^2-9}{x^2-16}

Possible Answers:

There are no \displaystyle x-intercepts.

\displaystyle x=3,-3

\displaystyle x=2

\displaystyle x=3

\displaystyle x=4,-4

Correct answer:

\displaystyle x=3,-3

Explanation:

To find the x-intercepts of the equation, we set the numerator equal to zero.

\displaystyle 0=x^2-9

\displaystyle 9=x^2

\displaystyle \sqrt{9}=\sqrt{x^2}

\displaystyle 3,-3=x

Example Question #2 : Parabolic Functions

What is the minimum possible value of the expression below?

\displaystyle 3x^{2}+6x-10

Possible Answers:

\displaystyle -19

The expression has no minimum value.

\displaystyle -13

\displaystyle -7

\displaystyle -10

Correct answer:

\displaystyle -13

Explanation:

We can determine the lowest possible value of the expression by finding the \displaystyle y-coordinate of the vertex of the parabola graphed from the equation \displaystyle y=3x^{2}+6x-10. This is done by rewriting the equation in vertex form.

\displaystyle 3x^{2}+6x-10

\displaystyle 3(x^{2}+2x)-10

\displaystyle 3(x^{2}+2x+1)-3* 1-10

\displaystyle 3(x+1)^{2}-13

The vertex of the parabola \displaystyle y=3(x+1)^{2}-13 is the point \displaystyle (-1, -13).

The parabola is concave upward (its quadratic coefficient is positive), so \displaystyle -13 represents the minimum value of \displaystyle y. This is our answer.

Example Question #924 : Algebra Ii

Find the coordinates of the vertex of this quadratic function:

\displaystyle y=-2x^{2}+6x-5

Possible Answers:

\displaystyle \left(\frac{3}{2},-\frac{1}{2}\right)

\displaystyle \left(-\frac{3}{2}, -\frac{1}{2}\right)

\displaystyle \left(\frac{2}{3}, -\frac{1}{2}\right)

\displaystyle \left(-\frac{2}{3}, -\frac{1}{2}\right)

\displaystyle \left(\frac{3}{2}, \frac{1}{2}\right)

Correct answer:

\displaystyle \left(\frac{3}{2},-\frac{1}{2}\right)

Explanation:

Vertex of quadratic equation \displaystyle y=ax^{2}+bx+c is given by \displaystyle (h,k).

\displaystyle h=-\frac{b}{2a}, k=c-\frac{b^{2}}{4a}

For \displaystyle y=-2x^{2}+6x-5,

\displaystyle h=-\frac{6}{2\times (-2)}=\frac{3}{2},

\displaystyle k=-5-\frac{6^{2}}{4\times (-2)}=-5+\frac{9}{2}=-\frac{1}{2},

so the coordinate of vertex is \displaystyle \left(\frac{3}{2}, -\frac{1}{2}\right).

Example Question #2 : Parabolic Functions

What are the x-intercepts of the graph of \displaystyle y=8x^{2}+2x-3 ? 

Possible Answers:

\displaystyle -\frac{1}{2}\ and -\frac{3}{4}

\displaystyle -\frac{1}{2}\ and\ \frac{3}{4}

\displaystyle \frac{1}{2} \ and -\frac{3}{4}

\displaystyle -\frac{3}{2}\ and\ -\frac{1}{4}

\displaystyle -\frac{3}{2}\ and\ \frac{1}{4}

Correct answer:

\displaystyle \frac{1}{2} \ and -\frac{3}{4}

Explanation:

Assume y=0,

\displaystyle y=8x^{2}+2x-3=0

\displaystyle (2x-1)(4x+3)=0

\displaystyle x=\frac{1}{2} , \displaystyle x=-\frac{3}{4}

Example Question #2 : Quadratic Functions

Find the vertex of the parabola given by the following equation:

\displaystyle f(x)=-2x^2-12x-23

Possible Answers:

\displaystyle (2,4)

\displaystyle (1,-7)

\displaystyle (-4,12)

\displaystyle (4,1)

\displaystyle (-3,-5)

Correct answer:

\displaystyle (-3,-5)

Explanation:

In order to find the vertex of a parabola, our first step is to find the x-coordinate of its center. If the equation of a parabola has the following form:

\displaystyle f(x)=ax^2+bx+c

Then the x-coordinate of its center is given by the following formula:

\displaystyle x_{center}=-\frac{b}{2a}

For the parabola described in the problem, a=-2 and b=-12, so our center is at:

\displaystyle x_{center}=-\frac{-12}{2(-2)}=-3

Now that we know the x-coordinate of the parabola's center, we can simply plug this value into the function to find the y-coordinate of the vertex:

\displaystyle f(-3)=-2(-3)^2-12(-3)-23=-5

So the vertex of the parabola given in the problem is at the point \displaystyle (-3,-5)

Example Question #141 : Functions And Lines

Give the minimum value of the function \displaystyle f(x) = 2 x^{2} - 5x + 9.

Possible Answers:

\displaystyle 18\frac{3}{8}

\displaystyle 6

\displaystyle 9

This function does not have a minimum.

\displaystyle 5\frac{7}{8}

Correct answer:

\displaystyle 5\frac{7}{8}

Explanation:

This is a quadratic function. The \displaystyle x-coordinate of the vertex of the parabola can be determined using the formula \displaystyle x = - \frac{b}{2a}, setting \displaystyle a = 2,b = -5:

\displaystyle x = - \frac{b}{2a} = - \frac{-5}{2 \cdot 2} =\frac{5}{4}

Now evaluate the function at \displaystyle x = \frac{5}{4}:

\displaystyle f(x) = 2 x^{2} - 5x + 9

\displaystyle f \left ( \frac{5}{4} \right ) = 2 \left ( \frac{5}{4} \right )^{2} - 5 \left ( \frac{5}{4} \right )+ 9

\displaystyle = 2 \left (\frac{25}{16} \right ) - 5 \left ( \frac{5}{4} \right )+ 9

\displaystyle = \frac{25}{8} - \frac{25}{4} + 9

\displaystyle = \frac{25}{8} - \frac{50}{8} + \frac{72}{8} =\frac{47}{8} =5\frac{7}{8}

Learning Tools by Varsity Tutors