Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #911 : Algebra Ii

Shift the graph \displaystyle 2y-3x=4 down four units.  What is the new equation?

Possible Answers:

\displaystyle y=\frac{3}{2}x

\displaystyle y=\frac{3}{2}x-1

\displaystyle y=\frac{3}{2}x-2

\displaystyle y=\frac{3}{2}x-5

\displaystyle y=\frac{3}{2}x+1

Correct answer:

\displaystyle y=\frac{3}{2}x-2

Explanation:

Rewrite this equation in slope intercept form \displaystyle y=mx+b.

Add \displaystyle 3x on both sides.

\displaystyle 2y-3x+3x=4+3x

The equation becomes:

\displaystyle 2y = 3x+4

Divide by two on both sides.

\displaystyle \frac{2y }{2}= \frac{3x+4}{2}

The equation in slope intercept form is:  \displaystyle y=\frac{3}{2}x+2

Shifting this equation down four units means that the y-intercept will be decreased four units.

The answer is:  \displaystyle y=\frac{3}{2}x-2

Example Question #48 : Transformations Of Linear Functions

Shift the line \displaystyle x=3y+1 left three units.  What is the new equation?

Possible Answers:

\displaystyle y= \frac{1}{3}x+\frac{4}{3}

\displaystyle y= \frac{1}{3}x-\frac{4}{3}

\displaystyle y= \frac{1}{3}x+\frac{2}{3}

\displaystyle y= \frac{2}{3}x-\frac{1}{3}

\displaystyle y= \frac{2}{3}x-\frac{2}{3}

Correct answer:

\displaystyle y= \frac{1}{3}x+\frac{2}{3}

Explanation:

Rewrite the equation \displaystyle x=3y+1 in slope-intercept form:   \displaystyle y=mx+b

Subtract one from both sides.

\displaystyle x-1=3y+1-1

\displaystyle x-1=3y

Divide by three on both sides.

\displaystyle \frac{x-1}{3}=\frac{3y}{3}

\displaystyle y=\frac{1}{3}x-\frac{1}{3}

If this line is shifted to the left three units, replace the x-variable with \displaystyle (x+3).

\displaystyle y=\frac{1}{3}(x+3)-\frac{1}{3}

Simplify by distribution.

\displaystyle y=\frac{1}{3}x+1-\frac{1}{3} = \frac{1}{3}x+\frac{2}{3}

The answer is:  \displaystyle y= \frac{1}{3}x+\frac{2}{3}

Example Question #49 : Transformations Of Linear Functions

Shift the equation \displaystyle y=-\frac{1}{3}x-1 to the left two units.  What is the new equation?

Possible Answers:

\displaystyle y=-\frac{1}{3}x-\frac{2}{3}

\displaystyle y=-\frac{1}{3}x+\frac{2}{3}

\displaystyle y=-\frac{1}{3}x+\frac{1}{3}

\displaystyle y=-\frac{1}{3}x-\frac{1}{3}

\displaystyle y=-\frac{1}{3}x-\frac{5}{3}

Correct answer:

\displaystyle y=-\frac{1}{3}x-\frac{5}{3}

Explanation:

If the linear function is shifted left two units, the x-variable must be replaced with the quantity of \displaystyle (x+2).

\displaystyle y=-\frac{1}{3}(x+2)-1

Simplify the equation by distribution.

\displaystyle y=-\frac{1}{3}x-\frac{2}{3}-1= -\frac{1}{3}x-\frac{2}{3}-\frac{3}{3}

Combine like terms.

The answer is:  \displaystyle y=-\frac{1}{3}x-\frac{5}{3}

Example Question #911 : Algebra Ii

Translate the equation \displaystyle y=-3x-8 left four units.  What is the new equation?

Possible Answers:

\displaystyle y= -3x+12

\displaystyle y= -3x-12

\displaystyle y= -3x+20

\displaystyle y= -3x-20

\displaystyle y= -3x+4

Correct answer:

\displaystyle y= -3x-20

Explanation:

To shift the line left four units, we will need to replace the x-variable with the quantity of:

\displaystyle (x+4)

Replace this term in the original equation.

\displaystyle y=-3(x+4)-8

Use distribution to simplify.

\displaystyle y=-3x-12-8 = -3x-20

The answer is:  \displaystyle y= -3x-20

Example Question #391 : Functions And Graphs

Shift the equation  \displaystyle y=9-9x left three units and up one unit.

Possible Answers:

\displaystyle y= -9x-17

\displaystyle y= -9x+12

\displaystyle y= -9x-36

\displaystyle y= -9x-24

\displaystyle y= -9x-2

Correct answer:

\displaystyle y= -9x-17

Explanation:

Rewrite this equation in slope-intercept form, \displaystyle y=mx+b.

\displaystyle y=-9x+9

Shifting this equation up one unit will add one to the y-intercept.

\displaystyle y=-9x+9+(1) = -9x+10

The equation becomes:  \displaystyle y= -9x+10

To shift this equation left three units, we will need to replace the x-variable with the quantity \displaystyle (x+3).

\displaystyle y= -9(x+3)+10

Use distribution to simplify the equation.

\displaystyle y= -9x-27+10 = -9x-17

The answer is:  \displaystyle y= -9x-17

Example Question #51 : Transformations Of Linear Functions

The line \displaystyle y=3x-29 is shifted right 5 units.  What must be the new equation?

Possible Answers:

\displaystyle y= 3x-34

\displaystyle y= 3x-44

\displaystyle y= 3x-14

\displaystyle y= 3x-24

Correct answer:

\displaystyle y= 3x-44

Explanation:

If the line is shifted right 5 units, we will need to replace the x-variable of the equation with the quantity \displaystyle (x-5).

\displaystyle y=3(x-5)-29

Simplify by distribution.

\displaystyle y=3x-15-29 = 3x-44

The answer is:  \displaystyle y= 3x-44

Example Question #101 : Linear Functions

Shift the equation \displaystyle x+9y=3x+2 up two units.  What is the new equation?

Possible Answers:

\displaystyle y=\frac{2}{9}x+\frac{8}{9}

\displaystyle y=\frac{2}{3}x+\frac{8}{3}

\displaystyle y=\frac{2}{3}x-6

\displaystyle y=\frac{2}{9}x+\frac{28}{9}

\displaystyle y=\frac{2}{9}x+\frac{20}{9}

Correct answer:

\displaystyle y=\frac{2}{9}x+\frac{20}{9}

Explanation:

Before we apply any transformations, we will need to put the equation in slope-intercept form, \displaystyle y=mx+b.

Subtract \displaystyle x from both sides.

\displaystyle x+9y-x=3x+2-x

\displaystyle 9y=2x+2

Divide by nine on both sides.

\displaystyle \frac{9y}{9}=\frac{2x+2}{9}

\displaystyle y=\frac{2}{9}x+\frac{2}{9}

Shifting the equation up two units will add 2, or \displaystyle \frac{18}{9} to the y-intercept.

\displaystyle y=\frac{2}{9}x+\frac{2}{9}+\frac{18}{9}

The answer is:  \displaystyle y=\frac{2}{9}x+\frac{20}{9}

Example Question #911 : Algebra Ii

Shift the line \displaystyle y=-4x-8 to the left 8 units.  What is the new equation?

Possible Answers:

\displaystyle y=-4x-32

\displaystyle y=-4x-40

\displaystyle y=-4x+16

\displaystyle y=-4x+32

\displaystyle y=-4x-16

Correct answer:

\displaystyle y=-4x-40

Explanation:

To shift the line left 8 units, we will need to replace the x-value with \displaystyle (x+8).

\displaystyle y=-4(x+8)-8

Distribute the negative four through the binomial.

\displaystyle y=-4x-32 -8

Combine like-terms.  

The answer is:  \displaystyle y=-4x-40

Example Question #56 : Transformations Of Linear Functions

Shift the equation \displaystyle y=-9x-5 left eight units.  What must be the new equation?

Possible Answers:

\displaystyle y=-9x-3

\displaystyle y=-9x-77

\displaystyle y=-9x-67

\displaystyle y=-9x+77

\displaystyle y=-9x-13

Correct answer:

\displaystyle y=-9x-77

Explanation:

To shift the equation left eight units, replace the x-variable with the quantity of \displaystyle (x+8).

\displaystyle y=-9(x+8)-5

Simplify this equation.

\displaystyle y=-9x-72-5

Combine like-terms.

The answer is:  \displaystyle y=-9x-77

Example Question #102 : Linear Functions

If the equation \displaystyle x+y=9 is shifted left 9 units, what is the equation after the translation?

Possible Answers:

\displaystyle y=-x-18

\displaystyle y=-x+18

\displaystyle y=-x

\displaystyle y=x+18

\displaystyle y=x

Correct answer:

\displaystyle y=-x

Explanation:

Rewrite the given line in standard form to slope-intercept format:

\displaystyle y=mx+b

Subtract \displaystyle x on both sides.

\displaystyle x+y-x=9-x

\displaystyle y=-x+9

Replace the x-value with the quantity of \displaystyle (x+9) since we are shifting the equation left 9 units.

\displaystyle y=-(x+9)+9

Distribute the negative sign through both terms of the binomial.

\displaystyle y=-x-9+9

The answer is:  \displaystyle y=-x

Learning Tools by Varsity Tutors