Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #19 : Inverse Functions

Find the inverse function and simplify your solution:

\displaystyle f(x) = 3x + 21

Possible Answers:

\displaystyle f^{-1}(x) = x -21

\displaystyle f^{-1}(x) = \frac{1}{3}x + 7

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

\displaystyle f^{-1}(x) = 3x-7

\displaystyle f^{-1}(x) = -3x - 21

Correct answer:

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

Explanation:

To find the Inverse function of:

\displaystyle f(x) = 3x + 21

1. Replace \displaystyle f(x) with \displaystyle y:

\displaystyle y = 3x + 21

2. Switch the variables \displaystyle y and \displaystyle x:

\displaystyle x = 3y + 21

3. Solve for \displaystyle y:

\displaystyle y = \frac{x - 21}{3}

4. Simplify:

\displaystyle y = \frac{1}{3}x - 7

5. Replace \displaystyle y with \displaystyle f^{-1}(x) and the final solution is:

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

Example Question #19 : Inverse Functions

Find the inverse function and simplify your solution:

\displaystyle f(x) = 3x + 21

Possible Answers:

\displaystyle f^{-1}(x) = x -21

\displaystyle f^{-1}(x) = \frac{1}{3}x + 7

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

\displaystyle f^{-1}(x) = 3x-7

\displaystyle f^{-1}(x) = -3x - 21

Correct answer:

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

Explanation:

To find the Inverse function of:

\displaystyle f(x) = 3x + 21

1. Replace \displaystyle f(x) with \displaystyle y:

\displaystyle y = 3x + 21

2. Switch the variables \displaystyle y and \displaystyle x:

\displaystyle x = 3y + 21

3. Solve for \displaystyle y:

\displaystyle y = \frac{x - 21}{3}

4. Simplify:

\displaystyle y = \frac{1}{3}x - 7

5. Replace \displaystyle y with \displaystyle f^{-1}(x) and the final solution is:

\displaystyle f^{-1}(x) = \frac{1}{3}x - 7

Example Question #211 : Functions And Graphs

Find the the inverse of f(x):

\displaystyle f(x)=\frac{1}{5}x+2

Possible Answers:

\displaystyle f^{-1}(x)=5x-10

\displaystyle f^{-1}(x)=5x+10

\displaystyle f^{-1}(x)=5x-2

\displaystyle f^{-1}(x)=10x+5

\displaystyle f^{-1}(x)=\frac{1}{5}x-2

Correct answer:

\displaystyle f^{-1}(x)=5x-10

Explanation:

To find an inverse of a function, switch x and y variables and solve:

\displaystyle f^{-1}(x)=\frac{1}{5}x+2

\displaystyle x=\frac{1}{5}y+2

Subtract 2 from both sides:

\displaystyle x-2=\frac{1}{5}y

Multiply both sides by 5:

\displaystyle 5(x-2)=y

Distribute:

\displaystyle 5x-10=y

The inverse is:

\displaystyle f^{-1}(x)=5x-10

Example Question #22 : Inverse Functions

Find the inverse of the following function:

\displaystyle f(x)=\frac{6x+1}{x}, x>0

Possible Answers:

\displaystyle f^{-1}(x)=-\frac{1}{x-6}

\displaystyle f^{-1}(x)=\frac{1}{x-6}

\displaystyle f^{-1}(x)=0

\displaystyle f^{-1}(x)=\frac{1}{x+6}

\displaystyle f^{-1}(x)=\frac{-6x-1}{-x}

Correct answer:

\displaystyle f^{-1}(x)=\frac{1}{x-6}

Explanation:

To find the inverse function of the function given, we must replace all of the x's with y's and, vice versa:

\displaystyle x=\frac{6y+1}{y}

Note that in the problem statement we were given \displaystyle f(x) and not \displaystyle y, but they mean the same thing in the sense that \displaystyle y is a function of \displaystyle x.

Now, we just solve for y:

\displaystyle xy=6y+1

\displaystyle xy-6y=1

\displaystyle y(x-6)=1

\displaystyle y=\frac{1}{x-6}

To denote that this is the inverse of the original function, we can use the notation

\displaystyle f^{-1}(x)=\frac{1}{x-6}.

Example Question #21 : Inverse Functions

What is the inverse function of \displaystyle f(x)=\frac{x^2 + 4x + 3}{x + 1}?

Possible Answers:

\displaystyle x-3

\displaystyle \frac{(x^2+1)}{(x-3)}

\displaystyle \frac{x+1}{x^2 + 4x + 3}

\displaystyle \frac{1}{x-1}

\displaystyle \frac{(x^2 + 2)(x-1)}{(x-3)}

Correct answer:

\displaystyle x-3

Explanation:

Before we begin, it would help to try and simplify the problem.  Let's start by factoring the numerator:

\displaystyle x^2 + 4x + 3 = (x+1)(x+3)

\displaystyle f(x)=\frac{(x+1)(x+3)}{x + 1}

We can see that the \displaystyle (x+1) terms will cancel, making this problem much easier:

\displaystyle f(x)= x+3

To find the inverse, we can put a \displaystyle y where the \displaystyle x is currently, put a \displaystyle x for the \displaystyle f(x), and then solve for \displaystyle y.

\displaystyle x = y + 3

\displaystyle y = x-3

\displaystyle f(x)^{-1}=x-3

Example Question #22 : Inverse Functions

Find the inverse of \displaystyle f(x)= \frac{4}{x^2 +3}.

Possible Answers:

\displaystyle 4(x+2)^2

\displaystyle \frac{4}{(x+3)(x-1)}

\displaystyle \frac{x^{2}+3}{4}

\displaystyle 3-\sqrt{\frac{4}{x}}

\displaystyle \pm\sqrt{\frac{4}{x}-3}

Correct answer:

\displaystyle \pm\sqrt{\frac{4}{x}-3}

Explanation:

First we're going to change the \displaystyle x in the function to a \displaystyle y, set the function equal to \displaystyle x, and solve for \displaystyle y:

\displaystyle x=\frac{4}{y^2 + 3}

Multiply each side by \displaystyle y^2 + 3:

\displaystyle x(y^2 + 3)=4

Divide each side by \displaystyle x:

\displaystyle y^2 + 3=\frac{4}{x}

Subtract \displaystyle 3 from each side:

\displaystyle y^2 = \frac{4}{x}-3

Finally, take the square root of each side:

\displaystyle y=\pm\sqrt{\frac{4}{x}-3}

Example Question #223 : Introduction To Functions

Find the inverse of the given function:

\displaystyle y=\frac{x+3}{x+1}

Possible Answers:

\displaystyle \frac{x+y+3}{x}

\displaystyle \frac{y+3}{y+1}

\displaystyle \frac{3-x}{x-1}

\displaystyle \frac{3+x}{x+1}

Correct answer:

\displaystyle \frac{3-x}{x-1}

Explanation:

To find the inverse of the function, we must first replace all x in the equation with y, and all y in the equation with x:

\displaystyle x=\frac{y+3}{y+1}

Now, solve for y:

\displaystyle x(y+1)=y+3

\displaystyle xy+x=y+3

\displaystyle xy-y=3-x

\displaystyle y(x-1)=3-x

\displaystyle y=\frac{3-x}{x-1}

Example Question #224 : Introduction To Functions

Find the inverse function of \displaystyle f(x)=x^3-1.

Possible Answers:

There is no inverse for \displaystyle f(x)

\displaystyle y=\sqrt[3]{x+1}

\displaystyle y=\sqrt[3]{-x+1}

\displaystyle y=\sqrt[3]{x-1}

Correct answer:

\displaystyle y=\sqrt[3]{x+1}

Explanation:

Step 1: To find the inverse of a function \displaystyle f(x), we will first switch the places of x and y. Wherever we saw y, we put x. Where we see x, we put y.

\displaystyle y=x^3+1

After changing places of letters:

\displaystyle x=y^3+1

Step 2: We want to solve for y, so we ned to get rid of the \displaystyle 1 on the right side.

\displaystyle x-1=y^3

Step 3: We want to find \displaystyle y, but we have \displaystyle y^3. To find \displaystyle y, we will take the cube root of both sides

\displaystyle \sqrt[3]{x-1}=\sqrt[3]{y^3}

This simplifies to:

\displaystyle \sqrt[3]{x-1}=y

The inverse function of \displaystyle f(x) is \displaystyle \sqrt[3]{x-1}=y

Example Question #221 : Functions And Graphs

What is the inverse for the function \displaystyle y=\frac{x-7}{8}

Possible Answers:

\displaystyle y=8x+7

\displaystyle y=x+7

\displaystyle y=\frac{8}{x-7}

Inverse does not exist

\displaystyle y=8x-7

Correct answer:

\displaystyle y=8x+7

Explanation:

To find the inverse of a function switch the position of x and y and solve to y.

\displaystyle x=\frac{y-7}{8}\Rightarrow8x=y-7\Rightarrow8x+7=y

Example Question #226 : Introduction To Functions

Find the inverse of:  \displaystyle y=4(x-6)

Possible Answers:

\displaystyle y=\frac{1}{4}x+\frac{2}{3}

\displaystyle y=-4x-24

\displaystyle y=-4x+24

\displaystyle y=\frac{1}{4}x+6

\displaystyle y=-\frac{1}{4}x+6

Correct answer:

\displaystyle y=\frac{1}{4}x+6

Explanation:

Interchange the x and y-variables.

\displaystyle x=4(y-6)

Solve for y.  Distribute the constant through the binomial.

\displaystyle x=4y-24

Add 24 on both sides.

\displaystyle x+24=4y-24+24

The equation becomes:

\displaystyle x+24=4y

Divide by four on both sides.

\displaystyle \frac{x+24}{4}=\frac{4y}{4}

Simplify both sides.

The answer is:  \displaystyle y=\frac{1}{4}x+6

Learning Tools by Varsity Tutors