All Algebra II Resources
Example Questions
Example Question #99 : Domain And Range
A function is defined on the domain according to the following table:
Define a function .
Which of the following values is not in the range of the function ?
This is the composition of two functions. By definition, . To find the range of , we need to find the values of this function for each value in the domain of . Since , this is equivalent to evaluating for each value in the range of , as follows:
Range value: 3
Range value: 5
Range value: 8
Range value: 13
Range value: 21
The range of on the set of range values of - and consequently, the range of - is the set . Of the choices given, only 1 is not in this set.
Example Question #91 : Domain And Range
Find the domain of the rational function,
The domain of a function is the set of all values of the independent variable, , over which the function is defined. The first step is usually to find where the function is undefined. For a rational function this is always going to consist of points where the denominator is zero.
Find the roots of the denominator:
(1)
This is not one we can easily factor. Therefore, we should use the quadratic formula.
______________________________________________________________
Recall that for a quadratic of the form the general form of the solution is,
(2)
_____________________________________________________________
The solution to equation (1) is,
(3)
The two roots are:
Now that we have the roots for the denominator we can construct the domain using interval notation. Use open parenthesis to exclude the two roots themselves from the domain. Also think of how the roots will split up the number line into three regions.
The total domain of our function in interval notation is:
Example Question #21 : Functions And Graphs
Find the domain and range of the function . Express the domain and range in interval notation.
Domain
Range
Domain
Range
(all real numbers)
Domain
Range
Domain
Range
Domain
(all real numbers)
Range
Domain
Range
Finding the Domain
The domain of a function is defined as the set of all valid input values of overwhich the function is defined. The simple rule of thumb for rational functions is that all real numbers will work except for those in which denominator is zero since division by zero is not allowed.
Set the denominator to zero and solve for ,
The function is therefore defined everywhere except at . Therefore the domain expressed in interval notation is,
Note that the open parentheses indicate that is not in the domain, but may become arbitrarily close to .
Finding the Range
The range of a function is defined as the set of all outputs spanning the domain. Finding the range can be achieved by finding the domain of the inverse function. First solve for to obtain the inverse function,
Multiply both sides by ,
Distribute ,
Move all terms with to one side of the equation,
Factor and solve for
The inverse function is therefore,
Find the domain of the inverse function,
The range of is the domain of , which is:
If you look at the plots for the function (in blue) and (in red and labeled as in the figure) you can see the asymptotic behavior of as approaches and of as approaches .
Example Question #1 : Function Notation
Let and . What is ?
THe notation is a composite function, which means we put the inside function g(x) into the outside function f(x). Essentially, we look at the original expression for f(x) and replace each x with the value of g(x).
The original expression for f(x) is . We will take each x and substitute in the value of g(x), which is 2x-1.
We will now distribute the -2 to the 2x - 1.
We must FOIL the term, because .
Now we collect like terms. Combine the terms with just an x.
Combine constants.
The answer is .
Example Question #21 : How To Find F(X)
Solve the function for . When
What does equal when,
25
-5
0
Plug 16 in for .
Add 9 to both sides.
Take the square root of both sides. =
Final answer is
Example Question #2 : Function Notation
Evaluate if and .
Undefined
This expression is the same as saying "take the answer of and plug it into ."
First, we need to find . We do this by plugging in for in .
Now we take this answer and plug it into .
We can find the value of by replacing with .
This is our final answer.
Example Question #1 : Function Notation
Orange Taxi company charges passengers a $4.50 base fase, plus $0.10 per mile driven. Write a function to represent the cost of a cab ride, in terms of number of miles driven, .
Total cost of the cab ride is going to equal the base fare ($4.50) plus an additional 10 cents per mile. This means the ride will always start off at $4.50. As the cab drives, the cost will increase by $0.10 each mile. This is represented as $0.10 times the number of miles. Therefore the total cost is:
Example Question #2 : Function Notation
A small office building is to be built with long walls feet long and short walls feet long each. The total length of the walls is to be feet.
Write an equation for in terms of .
The pre-question text provides us with all of the information required to complete this problem.
We know that the total length of the walls is to be ft.
We also know that we have a total of walls and walls.
With this, we can set up an equation and solve for .
Our equation will be with sum of all the walls set equal to the total length of the wall...
Remeber, we want in terms of , which means our equation should look like
something
Subtract on both sides
Divide by on both sides
Simplify
Answer!!!
Example Question #2 : Function Notation
What is the slope of the function ?
The function is written in slope-intercept form, which means:
where:
= slope
= x value
= y-intercept
Therefore, the slope is
Example Question #1 : Function Notation
A cable company charges a flat $29.99 activation fee, and an additional $12.99 per month for service. How would a function of the cost be represented in terms of months of service, ?
This cannot be written as a function
The flat rate of 29.99 does not change depending on months of service. It is $29.99 no matter how long services are in use. The monthy fee is directly related to the number of months the services are in use.
Certified Tutor