Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : Distributing Exponents (Power Rule)

Simplify:

\displaystyle (24^{12})^{\frac{1}{18}}

Possible Answers:

\displaystyle 9\sqrt[3]{4}

\displaystyle 4\sqrt[3]{9}

\displaystyle 12

\displaystyle 24\sqrt[3]{2}

\displaystyle 16

Correct answer:

\displaystyle 4\sqrt[3]{9}

Explanation:

When exponents are being raised by another exponent, we just multiply the powers.

\displaystyle (24^{12})^{\frac{1}{18}}=24^{12*\frac{1}{18}}=24^{\frac{2}{3}} 

When we have fractional exponents, we convert like this:

\displaystyle x^{\frac{a}b{}}=\sqrt[b]{x^a}\displaystyle b is the index of the radical which is the denominator of the fractional exponent, \displaystyle a is the power that will raise the base which is the numerator of the fractional exponent and \displaystyle x is the base. 

\displaystyle 24^{\frac{2}{3}}=\sqrt[3]{24^2}=\sqrt[3]{576} The perfect cube we can get is \displaystyle 64.

\displaystyle \sqrt[3]{576}=\sqrt[3]{64*9}=4\sqrt[3]{9}

 

Example Question #3681 : Algebra Ii

Evaluate:

\displaystyle (2^9)^4

Possible Answers:

\displaystyle 2^{36}

\displaystyle 4^{10}

\displaystyle 4^8

\displaystyle 8^9

\displaystyle 2^{13}

Correct answer:

\displaystyle 2^{36}

Explanation:

When dealing exponents being raised by a power, we multiply the exponents and keep the base.

\displaystyle (2^9)^4=2^{9*4}=2^{36}

Example Question #3682 : Algebra Ii

Evaluate:

\displaystyle (5^{6})^7

Possible Answers:

\displaystyle 5^{13}

\displaystyle 5^{42}

\displaystyle 25^5

\displaystyle 5^{28}

\displaystyle 5^{20}

Correct answer:

\displaystyle 5^{42}

Explanation:

When dealing exponents being raised by a power, we multiply the exponents and keep the base.

\displaystyle (5^{6})^7=5^{6*7}=5^{42}

Example Question #3683 : Algebra Ii

Evaluate:

\displaystyle (9^9)^9

Possible Answers:

\displaystyle 81^{9}

\displaystyle 9^{99}

\displaystyle 81^{18}

\displaystyle 9^{81}

\displaystyle 9^{18}

Correct answer:

\displaystyle 9^{81}

Explanation:

When dealing with exponents being raised by another exponent, we multiply the powers and keep the base the same.

\displaystyle (9^9)^9=9^{9*9}=9^{81}

Example Question #3684 : Algebra Ii

Evaluate: 

\displaystyle (3^{15})^7

Possible Answers:

\displaystyle 3^{22}

\displaystyle 3^{42}

\displaystyle 9^{15}

\displaystyle 9^{12}

\displaystyle 3^{105}

Correct answer:

\displaystyle 3^{105}

Explanation:

When dealing with exponents being raised by another exponent, we multiply the powers and keep the base the same.

\displaystyle (3^{15})^7=3^{15*7}=3^{105}

Example Question #3685 : Algebra Ii

Evaluate:

\displaystyle (18^5)^5

Possible Answers:

\displaystyle 18^{25}

\displaystyle 90^{5}

\displaystyle 18^{10}

\displaystyle 90^{25}

\displaystyle 18^{55}

Correct answer:

\displaystyle 18^{25}

Explanation:

When an exponent is raised by another power, we will multiply the exponents and keep the base the same.

Therefore:

\displaystyle (18^5)^5=18^{5*5}=18^{25}

Example Question #3686 : Algebra Ii

Evaluate:

 \displaystyle \left(\left(\frac{1}{2}\right)^6\right)^{\frac{1}{2}}

Possible Answers:

\displaystyle 8

\displaystyle 16

\displaystyle \frac{1}{8}

\displaystyle \frac{1}{4}

\displaystyle \frac{1}{16}

Correct answer:

\displaystyle \frac{1}{8}

Explanation:

When an exponent is raised by another power, we will multiply the exponents and keep the base the same.

Therefore:

\displaystyle \left(\left(\frac{1}{2}\right)^6\right)^{\frac{1}{2}}=\left(\frac{1}{2}\right)^{6*\frac{1}{2}}=\frac{1}{2^{3}}=\frac{1}{8}

Example Question #37 : Distributing Exponents (Power Rule)

Simplify:

\displaystyle (x+y)^2+(xy)^2

Possible Answers:

\displaystyle x^2+4xy+y^2

\displaystyle x^2+y^2+x^2y^2

\displaystyle 2x^2+2y^2

\displaystyle x^2+2xy+y^2+x^2y^2

Correct answer:

\displaystyle x^2+2xy+y^2+x^2y^2

Explanation:

To start, we must examine the first term. Note that we are squaring a sum, so we cannot simply distribute the power of 2 to each term. We must take the sum times the sum:

\displaystyle (x+y)(x+y)=x^2+2xy+y^2

The second term, however, is a product, in which case we can distribute the power:

\displaystyle (xy)^2=x^2y^2

Adding the two together, we get

\displaystyle x^2+2xy+y^2+x^2y^2

Example Question #3687 : Algebra Ii

Simplify: \displaystyle (2^5)^9

Possible Answers:

\displaystyle 2^{16}

\displaystyle 2^{88}

\displaystyle 2^{45}

\displaystyle 2^{24}

\displaystyle 2^{14}

Correct answer:

\displaystyle 2^{45}

Explanation:

When an exponent is raised by another exponent, we just multiply the exponents and keep the base the same.

\displaystyle (2^5)^9=2^{5*9}=2^{45}

Example Question #3688 : Algebra Ii

Simplify: \displaystyle (17^8)^{-4}

Possible Answers:

\displaystyle 17^{-4}

\displaystyle 17^{-32}

\displaystyle 17^{8}

\displaystyle 17^{-12}

\displaystyle 17^4

Correct answer:

\displaystyle 17^{-32}

Explanation:

When an exponent is raised by another exponent, we just multiply the exponents and keep the base the same.

\displaystyle (17^8)^{-4}=17^{8*-4}=17^{-32}

Learning Tools by Varsity Tutors