Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Simplifying Exponents

What is the largest positive integer, \displaystyle z, such that \displaystyle 2^z is a factor of \displaystyle 16^4?

Possible Answers:

5

16

10

20

8

Correct answer:

16

Explanation:

\displaystyle 16^4 = (2^4)^4 = 2^1^6. Thus, \displaystyle z is equal to 16.

Example Question #3651 : Algebra Ii

Simplify the expression:

\displaystyle (3x^4y^2)(4xy^2)^{-3}

Possible Answers:

\displaystyle \frac{3x}{16y^3}

\displaystyle \frac{3x}{64y^4}

\displaystyle 3xy

\displaystyle \frac{3x}{64y^3}

Cannot be simplified

Correct answer:

\displaystyle \frac{3x}{64y^4}

Explanation:

Begin by distributing the exponent through the parentheses. The power rule dictates that an exponent raised to another exponent means that the two exponents are multiplied:

\displaystyle (3x^{4}y^2)(4xy^2)^{-3}= (3xy^2)(4^{-3}x^{-3}y^{-6})

Any negative exponents can be converted to positive exponents in the denominator of a fraction:

\displaystyle \frac{3x^4y^2}{64x^3y^6}

The like terms can be simplified by subtracting the power of the denominator from the power of the numerator:

\displaystyle \frac{3x^4y^2}{64x^3y^6}=\frac{3}{64}x^{4-3}y^{2-6}=\frac{3}{64}xy^{-4}

\displaystyle \frac{3x}{64y^4}

Example Question #2 : Simplifying Exponents

Order the following from least to greatest:

\displaystyle 25^{100}

\displaystyle 2^{300}

\displaystyle 3^{500}

\displaystyle 4^{400}

\displaystyle 2^{600}

 

 

Possible Answers:

\displaystyle 3^{500}, 4^{400}, 2^{300}, 25^{100}, 2^{600}

\displaystyle 2^{300}, 2^{600}, 3^{500}, 25^{100}, 4^{400}

\displaystyle 2^{300}, 25^{100}, 2^{600}, 3^{500}, 4^{400}

\displaystyle 25^{100}, 2^{300}, 2^{600}, 3^{500}, 4^{400}

\displaystyle 2^{600}, 2^{300}, 25^{100}, 3^{500}, 4^{400}

Correct answer:

\displaystyle 2^{300}, 25^{100}, 2^{600}, 3^{500}, 4^{400}

Explanation:

In order to solve this problem, each of the answer choices needs to be simplified.

Instead of simplifying completely, make all terms into a form such that they have 100 as the exponent.  Then they can be easily compared.

\displaystyle 2^3^0^0 = (2^3)^1^0^0 = 8^1^0^0\displaystyle 3^5^0^0 = (3^5)^1^0^0 = 243^1^0^0, \displaystyle 4^4^0^0 = (4^4)^1^0^0 = 256^1^0^0, and \displaystyle 2^6^0^0 = (2^6)^1^0^0 = 64^1^0^0.

Thus, ordering from least to greatest: \displaystyle 8^1^0^0, 25^1^0^0, 64^1^0^0, 243^1^0^0, 256^1^0^0.

Example Question #4 : Distributing Exponents (Power Rule)

Simplify:

\displaystyle \frac{(x^{4})^{3}(5x)^{-5}}{xy}

Possible Answers:

\displaystyle \frac{125x^{2}}{y}

\displaystyle \frac{5x}{y}

\displaystyle \frac{x^{6}}{3125y}

\displaystyle \frac{1}{y}

\displaystyle \frac{x^{12}}{5y}

Correct answer:

\displaystyle \frac{x^{6}}{3125y}

Explanation:

\displaystyle \frac{(x^{4})^{3}(5x)^{-5}}{xy}

Step 1: Distribute the exponents in the numberator.

\displaystyle \frac{x^{12}5^{-5}x^{-5}}{xy}

Step 2: Represent the negative exponents in the demoninator.

\displaystyle \frac{x^{12}}{5^{5}x^{5}xy}

Step 3: Simplify by combining terms.

\displaystyle \frac{x^{12}}{3125x^{6}y}

\displaystyle \frac{x^6}{3125y}

Example Question #1 : Review And Other Topics

Simplify:

\displaystyle (4x^3)^4

Possible Answers:

\displaystyle 512x

\displaystyle 256x^{12}

\displaystyle 4x^7

\displaystyle 4x^{12}

\displaystyle 16x^7

Correct answer:

\displaystyle 256x^{12}

Explanation:

Use the power rule to distribute the exponent:

\displaystyle (4x^3)^4\rightarrow 4^4\cdot x^{3\cdot 4}\rightarrow 256x^{12}

Example Question #1 : Distributing Exponents (Power Rule)

Simplify:

\displaystyle \left ( \frac{a^2b^{-4}}{a^3b^6c^{-7}} \right )^{-4}

Possible Answers:

\displaystyle \left ( \frac{a^4b^{40}}{c^{28}} \right )

\displaystyle \left ( \frac{ab}{c} \right )

\displaystyle \left ( \frac{a^{20}b^8}{c^{28}} \right )

\displaystyle \left ( \frac{c^{16}}{ab^4} \right )

\displaystyle 1

Correct answer:

\displaystyle \left ( \frac{a^4b^{40}}{c^{28}} \right )

Explanation:

Step 1: Distribute the exponent through the terms in parentheses:

\displaystyle \left ( \frac{a^{-8}b^{16}}{a^{-12}b^{-24}c^{28}} \right )

Step 2: Use the division of exponents rule.  Subtract the exponents in the numerator from the exponents in the denominator:

\displaystyle {\color{Red} \left ( \frac{a^4b^{40}}{c^{28}} \right )}

Example Question #1 : Distributing Exponents (Power Rule)

Simplify.

\displaystyle ({x^{2a}}{x^{-b}})^2

Possible Answers:

\displaystyle x^{4a^2-4ab+b2}

\displaystyle x^{4a+b}

\displaystyle \frac{x^{4a}}{x^b}

\displaystyle \frac{x^{2a}}{x^{2b}}

\displaystyle \frac{x^{4a}}{x^{2b}}

Correct answer:

\displaystyle \frac{x^{4a}}{x^{2b}}

Explanation:

When a power applies to an exponent, it acts as a multiplier, so 2a becomes 4a and -b becomes -2b. The negative exponent is moved to the denominator.

Example Question #3652 : Algebra Ii

Simplify \displaystyle (x^2y^4)^2.

Possible Answers:

\displaystyle x^2y^2

\displaystyle x^4y^6

\displaystyle xy^2

\displaystyle y^2

\displaystyle x^4y^8

Correct answer:

\displaystyle x^4y^8

Explanation:

When faced with a problem that has an exponent raised to another exponent, the powers are multiplied: \displaystyle x^{2\cdot2}y^{4\cdot2} then simplify: \displaystyle x^4y^8.

Example Question #1 : Distributing Exponents (Power Rule)

Solve:  \displaystyle -25^0-(5^2)^0

Possible Answers:

\displaystyle 1

\displaystyle 0

\displaystyle -1

\displaystyle -2

\displaystyle -25

Correct answer:

\displaystyle -2

Explanation:

Solve each term separately.  A number to the zeroth power is equal to 1, but be careful to apply the signs after the terms have been simplified.

\displaystyle -25^0-(5^2)^0 = -1-1 =-2

Example Question #1 : Distributing Exponents (Power Rule)

Simplify this expression: \displaystyle \left(8x^5x^3y^2\right)^2

Possible Answers:

\displaystyle 16x^{34}y^4

\displaystyle 64x^{16}y^4

\displaystyle 64x^{30}y^4

\displaystyle 64x^{34}y^4

\displaystyle 16x^{12} y^4

Correct answer:

\displaystyle 64x^{16}y^4

Explanation:

\displaystyle 64x^{16}y^4 is the correct answer because the order of operations were followed and the multiplication and power rules of exponents were obeyed. These rules are as follows: PEMDAS (parentheses,exponents, multiplication, division, addition, subtraction), for multiplication of exponents follow the format \displaystyle a^m*a^n=a^{m+n}, and \displaystyle (a^m)^n=a^{m*n}.

\displaystyle [8x^5x^3y^2]^2

First we simplify terms within the parenthesis because of the order of operations and the multiplication rule of exponents:

\displaystyle [8x^8y^2]^2 

Next we use the power rule to distribute the outer power:

\displaystyle 8^2(x^8)^2(y^2)^2=\displaystyle 64x^{16}y^4

**note that in the first step it isn't necessary to combine the two x powers because the individuals terms will still add to x^16 at the end if you use the power rule correctly. However, following the order of operations is a great way to avoid simple math errors and is relevant in many problems.

 

Learning Tools by Varsity Tutors