Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #255 : Understanding Exponents

Evaluate:  \(\displaystyle -3^0 \cdot -2^{3} \cdot -3^2\)

Possible Answers:

\(\displaystyle 54\)

\(\displaystyle 72\)

\(\displaystyle -72\) 

\(\displaystyle 0\)

\(\displaystyle -54\)

Correct answer:

\(\displaystyle -72\) 

Explanation:

Use order of operations to evaluate this expression.  Evaluate the exponents first.

\(\displaystyle 3^0 = 1\)

\(\displaystyle 2^3 = 8\)

\(\displaystyle 3^2 =9\)

Apply the negative signs in front of these values.

\(\displaystyle -3^0 \cdot -2^{3} \cdot -3^2 =(-1)(-8)(-9) = -72\)

The answer is:  \(\displaystyle -72\)

Example Question #252 : Understanding Exponents

Evaluate:  \(\displaystyle 2^2+2^5+3^0\)

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 37\)

\(\displaystyle 129\)

\(\displaystyle 128\)

\(\displaystyle 36\)

Correct answer:

\(\displaystyle 37\)

Explanation:

Rewrite the expression by expanding the exponents.   A number raised to a number is multiplied by itself that many times.  The exception is that any number raised to the power of zero is equal to one.

\(\displaystyle 2^2+2^5+3^0 = (2\times 2)+(2\times 2\times 2\times 2\times 2)+1\)

\(\displaystyle =4+32+1=37\)

The answer is:  \(\displaystyle 37\)

Example Question #3391 : Algebra Ii

Expand \(\displaystyle 12^8\)

Possible Answers:

\(\displaystyle 8*8*8*8*8*8*8*8*8*8*8*8\)

\(\displaystyle 12*12*8*8*8*12\)

\(\displaystyle 12*12*12*12*12*12*12*12\)

\(\displaystyle 12*8\)

\(\displaystyle 12^8*12^8*12^8*12^8*12^8*12^8*12^8*12^8\)

Correct answer:

\(\displaystyle 12*12*12*12*12*12*12*12\)

Explanation:

To expand the exponent, we multiply the base by the power it is being raised to.

\(\displaystyle 12^8=12*12*12*12*12*12*12*12\)

Example Question #3392 : Algebra Ii

Expand \(\displaystyle (-6)^6\)

Possible Answers:

\(\displaystyle -6*6\)

\(\displaystyle 6*6*6*6*6*6\)

\(\displaystyle -6^6*-6^6*-6^6*-6^6*-6^6*-6^6\)

\(\displaystyle -6*-6*-6*-6*-6*-6\)

\(\displaystyle -6*-6*-6*-6*-6*-6*6*6*6*6*6*6\)

Correct answer:

\(\displaystyle -6*-6*-6*-6*-6*-6\)

Explanation:

To expand the exponent, we multiply the base by the power it is being raised to.

\(\displaystyle (-6)^6=-6*-6*-6*-6*-6*-6\)

Example Question #263 : Exponents

Evaluate:  \(\displaystyle (x^{3})^3+3x^3+3x(3x^3)\)

Possible Answers:

\(\displaystyle 10x^3+9x^4\)

\(\displaystyle x^9+6x^4+3x^3\)

\(\displaystyle x^6+9x^4+3x^3\)

\(\displaystyle x^6+6x^4+3x^3\)

\(\displaystyle x^9+9x^4+3x^3\)

Correct answer:

\(\displaystyle x^9+9x^4+3x^3\)

Explanation:

Evaluate each term of \(\displaystyle (x^{3})^3+3x^3+3x(3x^3)\).

\(\displaystyle (x^{3})^3 = (x^{3})(x^{3})(x^{3}) = x^{3+3+3} = x^9\)

The term \(\displaystyle 3x^3\) is already simplified.

\(\displaystyle 3x(3x^3) = 9x^4\)

Combine all the terms.  There are no like-terms.

The answer is:  \(\displaystyle x^9+9x^4+3x^3\)

Example Question #3393 : Algebra Ii

Convert \(\displaystyle 4^{10}\) to base \(\displaystyle 2\).

Possible Answers:

\(\displaystyle 2^{24}\)

\(\displaystyle 2^{10}\)

\(\displaystyle 2^{20}\)

\(\displaystyle 2^8\)

\(\displaystyle 2^{12}\)

Correct answer:

\(\displaystyle 2^{20}\)

Explanation:

We know that \(\displaystyle 4=2^2\).

Therefore 

\(\displaystyle 4^{10}=(2^2)^{10}=2^{20}\).

Remember to apply the power rule of exponents.

Example Question #265 : Exponents

Convert \(\displaystyle 2^{18}\) to base \(\displaystyle \frac{1}{2}\).

Possible Answers:

\(\displaystyle (\frac{1}{2})^{-36}\)

\(\displaystyle (\frac{1}{2})^{-18}\)

\(\displaystyle (\frac{1}{2})^{18}\)

\(\displaystyle (\frac{1}{2})^{-16}\)

\(\displaystyle (\frac{1}{2})^{24}\)

Correct answer:

\(\displaystyle (\frac{1}{2})^{-18}\)

Explanation:

We know that \(\displaystyle 2=\frac{1}{2}^{-1}\).

Remember when having negative exponents 

\(\displaystyle x^{-a}=\frac{1}{x^a}\) 

which \(\displaystyle a\) is the positive exponent raising base \(\displaystyle x\).

Therefore 

\(\displaystyle 2^{18}=(\frac{1}{2}^{-1})^{18}=(\frac{1}{2})^{-18}\).

Remember to apply the power rule of exponents.

Example Question #64 : Simple Exponents

Evaluate \(\displaystyle 5^6\)

Possible Answers:

\(\displaystyle 252525\)

\(\displaystyle 15625\)

\(\displaystyle 78125\)

\(\displaystyle 125625\)

\(\displaystyle 3025\)

Correct answer:

\(\displaystyle 15625\)

Explanation:

To evaluate the exponent, we expand \(\displaystyle 5^6\) into \(\displaystyle 5*5*5*5*5*5\).

We just multiply the numbers out to get,

\(\displaystyle \\ 5\times 5=25 \\25\times 5=125 \\125\times 5=625 \\625\times 5=3125 \\3125\times 5=15625\)

Therefore,  \(\displaystyle 5^6=15625\).

Example Question #266 : Exponents

Evaluate \(\displaystyle -9^4\)

Possible Answers:

\(\displaystyle 729\)

\(\displaystyle 6561\)

\(\displaystyle -6561\)

\(\displaystyle -729\)

\(\displaystyle -59049\)

Correct answer:

\(\displaystyle -6561\)

Explanation:

To evaluate the exponent, we expand \(\displaystyle -9^4\) into \(\displaystyle -(9*9*9*9)\).

We just multiply the numbers out to get,

\(\displaystyle \\9\times9=81 \\81\times 9=729 \\729\times9=6561\)

Remember to apply the negative sign after solving the exponent.

\(\displaystyle -6561\)

Example Question #267 : Exponents

Evaluate \(\displaystyle (-8)^6\)

Possible Answers:

\(\displaystyle 262144\)

\(\displaystyle 144262\)

\(\displaystyle -144262\)

\(\displaystyle -262144\)

\(\displaystyle 164826\)

Correct answer:

\(\displaystyle 262144\)

Explanation:

To evaluate the exponent, we expand \(\displaystyle (-8)^6\) into \(\displaystyle -8*-8*-8*-8*-8*-8\).

We just multiply the numbers out to get 

\(\displaystyle \\-8\times -8=64 \\64\times -8=-512 \\-512\times -8=4096 \\4096\times -8=-32768 \\-32768\times -8=262144\).

Learning Tools by Varsity Tutors