Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3371 : Algebra Ii

Convert \(\displaystyle \frac{1}{8}\) to base \(\displaystyle 2\)

Possible Answers:

\(\displaystyle -2^{3}\)

\(\displaystyle 2^2\)

\(\displaystyle 2^{\frac{1}{8}}\)

\(\displaystyle 2^{\frac{1}{3}}\)

\(\displaystyle 2^{-3}\)

Correct answer:

\(\displaystyle 2^{-3}\)

Explanation:

We know that exponents raised to the negative power will generate fractions. 

We also know that \(\displaystyle 8\) is divisible by \(\displaystyle 2\).

\(\displaystyle 8=2^3\) 

However, since this a fraction, we then have the following:

\(\displaystyle \frac{1}{8}=2^{-3}\)

Example Question #3372 : Algebra Ii

Convert \(\displaystyle 256\) to base \(\displaystyle \frac{1}{16}\)

Possible Answers:

\(\displaystyle -\frac{1}{16}^{-2}\)

\(\displaystyle \frac{1}{16}^2\)

\(\displaystyle \frac{1}{16}^{16}\)

\(\displaystyle \frac{1}{16}^{-2}\)

\(\displaystyle \frac{1}{16}^{\frac{1}{16}}\)

Correct answer:

\(\displaystyle \frac{1}{16}^{-2}\)

Explanation:

If fractions are raised to a positive integer exponents, we know we will generate fractions; however, if a fraction is raised by a negative integer exponent, our answer will be whole number instead.

For example: 

\(\displaystyle \frac{1}{2}^{-2}=\frac{1}{\frac{1}{2^2}}=\frac{1}{\frac{1}{4}}=4\)

The following rule has been used in this scenario:

\(\displaystyle x^{-a}=\frac{1}{x^a}\) 

In this formula, \(\displaystyle a\) is a positive exponent raising the base \(\displaystyle x\).

We know \(\displaystyle 256=16^2\).

Since we are dealing with a integer and converting to fractional base, we know we need to have a negative exponent.

The answer is:

\(\displaystyle \frac{1}{16}^{-2}\)

Example Question #3371 : Algebra Ii

Expand:

\(\displaystyle 18^8\)

 

Possible Answers:

\(\displaystyle 18*8\)

\(\displaystyle 8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8*8\)

\(\displaystyle 18*8*8*18\)

\(\displaystyle 18*18*18*18*18*18*18*18\)

\(\displaystyle 18*18*18*18*8*8*8*8\)

Correct answer:

\(\displaystyle 18*18*18*18*18*18*18*18\)

Explanation:

When expanding an exponent, we must multiply the base by itself for the number of indicated by the exponential value.

\(\displaystyle 18^8=18*18*18*18*18*18*18*18\)

Example Question #3372 : Algebra Ii

Evaluate: 

\(\displaystyle 15^3\)

Possible Answers:

\(\displaystyle 1515\)

\(\displaystyle 3375\)

\(\displaystyle 2575\)

\(\displaystyle 1025\)

\(\displaystyle 2525\)

Correct answer:

\(\displaystyle 3375\)

Explanation:

When expanding an exponent, we must multiply the base by itself for the number of indicated by the exponential value.

\(\displaystyle 15^3\) is expanded out to the following:

\(\displaystyle 15*15*15\)

The product is \(\displaystyle 3375\).

Example Question #243 : Understanding Exponents

Convert \(\displaystyle 8^{12}\) to base \(\displaystyle 4\).

Possible Answers:

\(\displaystyle 4^{16}\)

\(\displaystyle 4^{18}\)

\(\displaystyle 4^{20}\)

\(\displaystyle 4^{12}\)

\(\displaystyle 4^{24}\)

Correct answer:

\(\displaystyle 4^{18}\)

Explanation:

First, we know that \(\displaystyle 8=2^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

 \(\displaystyle (2^3)^{12}=2^{36}\)

Second, we know that \(\displaystyle 4=2^2\)

By applying the same rule, we will get the following expression:

\(\displaystyle (2^2)^x=2^{36}\)

Therefore:

\(\displaystyle 2x=36\) and \(\displaystyle x=18\) 

The answer is \(\displaystyle 4^{18}\).

Example Question #712 : Mathematical Relationships And Basic Graphs

Change \(\displaystyle 27^6\) to base \(\displaystyle 3\).

Possible Answers:

\(\displaystyle 3^{27}\)

\(\displaystyle 3^{9}\)

\(\displaystyle 3^{18}\)

\(\displaystyle 3^{12}\)

\(\displaystyle 3^{15}\)

Correct answer:

\(\displaystyle 3^{18}\)

Explanation:

First, we know that \(\displaystyle 27=3^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

\(\displaystyle (3^3)^6\) or \(\displaystyle 3^{18}\)

Example Question #3371 : Algebra Ii

Convert \(\displaystyle 8^{12}\) to base \(\displaystyle 2\).

Possible Answers:

\(\displaystyle 2^{36}\)

\(\displaystyle 2^{18}\)

\(\displaystyle 2^{24}\)

\(\displaystyle 2^{60}\)

\(\displaystyle 2^{40}\)

Correct answer:

\(\displaystyle 2^{36}\)

Explanation:

First, we know that \(\displaystyle 8=2^3\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

\(\displaystyle (2^3)^{12}=2^{36}\)

Example Question #244 : Understanding Exponents

Convert \(\displaystyle 16^9\) to base \(\displaystyle 8\).

Possible Answers:

\(\displaystyle 8^9\)

\(\displaystyle 8^{13}\)

\(\displaystyle 8^{16}\)

\(\displaystyle 8^{12}\)

\(\displaystyle 8^{24}\)

Correct answer:

\(\displaystyle 8^{12}\)

Explanation:

First, we know that \(\displaystyle 16=2^4\).

Apply the power rule of exponents:

\(\displaystyle (a^m)^n=a^m^n\)

We can then write the following expression:

 \(\displaystyle (2^4)^{9}=2^{36}\)

Second, we know that \(\displaystyle 8=2^3\)

By applying the same rule, we will get the following expression:

\(\displaystyle (2^3)^x=2^{36}\)

Therefore:

\(\displaystyle 3x=36\)

Simplify and solve for \(\displaystyle x\).

\(\displaystyle x=12\)

The answer is \(\displaystyle 8^{12}\).

Example Question #3373 : Algebra Ii

Expand \(\displaystyle 11^4\)

Possible Answers:

\(\displaystyle 11*11*11*11\)

\(\displaystyle 11*4\)

\(\displaystyle 4*4*4*11*11*11\)

\(\displaystyle 11^4*11^4*11^4*11^4\)

\(\displaystyle 4*4*4*4*4*4*4*4*4*4*4\)

Correct answer:

\(\displaystyle 11*11*11*11\)

Explanation:

When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle 11^4=11*11*11*11\)

Example Question #3374 : Algebra Ii

Expand \(\displaystyle 2^7\)

Possible Answers:

\(\displaystyle 2*7\)

\(\displaystyle 2*2*2*2*2*2*2\)

\(\displaystyle 2*2*7*7\)

\(\displaystyle 7*7\)

\(\displaystyle 2^7*2^7*2^7*2^7*2^7*2^7*2^7\)

Correct answer:

\(\displaystyle 2*2*2*2*2*2*2\)

Explanation:

When expanding exponents, we repeat the base by the exponential value.

\(\displaystyle 2^7=\)\(\displaystyle 2*2*2*2*2*2*2\)

Learning Tools by Varsity Tutors