All Algebra II Resources
Example Questions
Example Question #6 : Indirect Proportionality
The number of hours needed for a contractor to finish a job varies indirectly with the total number of people the contractor hires. If the job is completed in hours when there are people, how many hours would it take if there were people?
The problem follows the formula
where H is the number of hours to complete the job, n is the number of people hired, and k is the constant of variation.
Setting H=6 and n = 8 yields k=48.
Therefore using the following equation we can plug 16 in for n and solve for H.
Therefore H is 3 hours.
Example Question #1 : Indirect Proportionality
varies inversely with . If , . What is the value of if ?
varies inversely with , so the variation equation can be written as:
can be solved for, using the first scenario:
Using this value for = 30 and = 90, we can solve for :
Example Question #1871 : Algebra Ii
varies directly with and inversely with the square root of . Find values for and that will give , for a constant of variation .
and
All of these answers are correct
and
and
All of these answers are correct
From the first sentence, we can write the equation of variation as:
We can then check each of the possible answer choices by substituting the values into the variation equation with the values given for and .
Therefore the equation is true if and
Therefore the equation is true if and
Therefore the equation is true if and
The correct answer choice is then "All of these answers are correct"
Example Question #31 : Proportionalities
varies directly with and . If and , then . Find if and .
None of these answers are correct
From the relationship of , , and ; the equation of variation can be written as:
Using the values given in the first scenario, we can solve for k:
Using the value of k and the values of y and z, we can solve for x:
Example Question #1872 : Algebra Ii
varies inversely with and the square root of . When and , . Find when and .
None of these answers are correct
First, we can create an equation of variation from the the relationships given:
Next, we substitute the values given in the first scenario to solve for :
Using the value for , we can now use the second values for and to solve for :
Example Question #1873 : Algebra Ii
varies directly with and the square root of . If , and then . Find the value of if and .
None of these answers are correct
From the relationship given, we can set up the variation equation
Using the first relationship, we can then solve for
Now using the values from the second relationship, we can solve for x
Example Question #1 : How To Find Inverse Variation
varies inversely as the square of . If , then . Find if (nearest tenth, if applicable).
The variation equation is for some constant of variation .
Substitute the numbers from the first scenario to find :
The equation is now .
If , then
Example Question #2 : How To Find Inverse Variation
The current, in amperes, that a battery provides an electrical object is inversely proportional to the resistance, in ohms, of the object.
A battery provides 1.2 amperes of current to a flashlight whose resistance is measured at 20 ohms. How much current will the same battery supply to a flashlight whose resistance is measured at 16 ohms?
If is the current and is the resistance, then we can write the variation equation for some constant of variation :
or, alternatively,
To find , substitute :
The equation is . Now substitute and solve for :
Example Question #1 : How To Find Direct Variation
The volume of a fixed mass of gas varies inversely as the atmospheric pressure, as measured in millibars, acting on it, and directly as the temperature, as measured in kelvins, acting on it.
A balloon is filled to a capacity of exactly 100 cubic meters at a time at which the temperature is 310 kelvins and the atmospheric pressure is 1,020 millibars. The balloon is released, and an hour later, the balloon is subject to a pressure of 900 millibars and a temperature of 290 kelvins. To the nearest cubic meter, what is the new volume of the balloon?
If are the volume, pressure, and temperature, then the variation equation will be, for some constant of variation ,
To calculate , substitute :
The variation equation is
so substitute and solve for .
Example Question #7 : How To Find Inverse Variation
If is inversely proportional to and knowing that when , determine the proportionality constant.
The general formula for inverse proportionality for this problem is
Given that when , we can find by plugging them into the formula.
Solve for by multiplying both sides by 5
So .