Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1841 : Algebra Ii

Solve for x

\displaystyle \frac{12}{(x+4)}=\frac{9}{(5-x)}

Possible Answers:

\displaystyle 31.5

\displaystyle 1.71

\displaystyle 9

\displaystyle 4

Correct answer:

\displaystyle 1.71

Explanation:

The correct answer is \displaystyle 1.71. Cross multiplying the equation in the question will give \displaystyle 12(5-x)=9(x+4). This is simplified to \displaystyle 60-5x=9x+36. Combining like terms gives \displaystyle 14x=24. Finally, isolating \displaystyle x gives \displaystyle 24/14 or \displaystyle 1.71

Example Question #1535 : High School Math

Sarah notices her map has a scale of \displaystyle \frac{1}{4}\; in=1\; mile.  She measures \displaystyle 12.5\; in between Beaver Falls and Chipmonk Cove.  How far apart are the cities?

Possible Answers:

\displaystyle 75\; miles

\displaystyle 50\; miles

\displaystyle 60\; miles

\displaystyle 90\; miles

\displaystyle 25\; miles

Correct answer:

\displaystyle 50\; miles

Explanation:

\displaystyle \frac{1}{4}\; in=1\; mile is the same as \displaystyle 1\; in = 4\; miles

So to find out the distance between the cities

\displaystyle 12.5\; in \cdot \frac{4\; miles}{1\;in }=50\; miles

Example Question #1 : Basic Single Variable Algebra

If an object is hung on a spring, the elongation of the spring varies directly as the mass of the object. A 20 kg object increases the length of a spring by exactly 7.2 cm. To the nearest tenth of a centimeter, by how much does a 32 kg object increase the length of the same spring?

Possible Answers:

\displaystyle 9.1\textrm{ cm}

\displaystyle 8.4 \textrm{ cm}

\displaystyle 18.4 \textrm{ cm}

\displaystyle 4.5 \textrm{ cm}

\displaystyle 11.5 \textrm{ cm}

Correct answer:

\displaystyle 11.5 \textrm{ cm}

Explanation:

Let \displaystyle M,L be the mass of the weight and the elongation of the spring. Then for some constant of variation \displaystyle k

\displaystyle L = kM

We can find \displaystyle k by setting \displaystyle M = 20,L=7.2 from the first situation:

\displaystyle 7.2 = k \cdot 20

\displaystyle k = 7.2 \div 20 = 0.36

so \displaystyle L = 0.36 M

In the second situation, we set \displaystyle M = 32 and solve for \displaystyle L:

\displaystyle L = 0.36 \cdot32 =11.52 

which rounds to 11.5 centimeters.

Example Question #1 : Understanding Direct Proportionality

Sunshine paint is made by mixing three parts yellow paint and one part red paint. How many gallons of yellow paint should be mixed with two quarts of red paint?

(1 gallon = 4 quarts)

Possible Answers:

\displaystyle 1.75\; gallons

\displaystyle 0.50\; gallons

\displaystyle 1.00\; gallons

\displaystyle 0.75\; gallons

\displaystyle 1.50\; gallons

Correct answer:

\displaystyle 1.50\; gallons

Explanation:

First set up the proportion:

\displaystyle \frac{3\; parts \; yellow}{1 \; part\; red}=\frac{x \; quarts \; yellow}{2 \; quarts \; red}

x = \displaystyle 6 \; quarts\;yellow\; paint

Then convert this to gallons:

\displaystyle 6 \; quarts\; \cdot \frac{1 \; gallon}{4\; quarts}= 1.50\; gallons

Example Question #1 : Other Mathematical Relationships

Sally currently has 192 books. Three months ago, she had 160 books. By what percentage did her book collection increase over the past three months?

Possible Answers:

\displaystyle 120\%

\displaystyle 80\%

\displaystyle 10\%

\displaystyle 83.3\%

\displaystyle 20\%

Correct answer:

\displaystyle 20\%

Explanation:

To find the percentage increase, divide the number of new books by the original amount of books:

\displaystyle 192-160=32

She has 32 additional new books; she originally had 160.

\displaystyle \frac{32}{160} = \frac{16}{80} = 0.20=20\%

Example Question #2 : Other Mathematical Relationships

Find \displaystyle x for the proportion \displaystyle \frac{x}{100}=\frac{1}{4}.

Possible Answers:

\displaystyle 50

\displaystyle 40

\displaystyle 25

\displaystyle 20

Correct answer:

\displaystyle 25

Explanation:

To find x we need to find the direct proportion. In order to do this we need to cross multiply and divide.

\displaystyle \frac{x}{100}=\frac{1}{4}

From here we mulitply 100 and 1 together. This gets us 100 and now we divide 100 by 4 which results in 

\displaystyle x=25

Example Question #3 : Other Mathematical Relationships

On a map of the United States, Mark notices a scale of  \displaystyle 1 \displaystyle \small in = 250 \displaystyle miles. If the distance between New York City and Los Angeles in real life is \displaystyle 2400 \displaystyle miles, how far would the two cities be on Mark's map?

Possible Answers:

\displaystyle 4.8 \displaystyle in

\displaystyle 2.4 \displaystyle in

\displaystyle .11 \displaystyle in

\displaystyle 12 \displaystyle in

\displaystyle 9.6 \displaystyle in

Correct answer:

\displaystyle 9.6 \displaystyle in

Explanation:

If the real distance between the two cities is \displaystyle 2400 \displaystyle miles, and \displaystyle 250 \displaystyle miles = \displaystyle 1 \displaystyle inch, then we can set up the proportional equation:

\displaystyle \frac{1 in}{250 miles}=\frac{xin}{2400 miles}

\displaystyle 250x=2400 \displaystyle in

\displaystyle x = 9.6 \displaystyle in

Example Question #2 : Proportionalities

If \displaystyle \small \small \small \frac{x}{108}=\frac{20}{y} and \displaystyle \small \frac{224}{y}=\frac{14}{3}, find \displaystyle \small x and \displaystyle \small y.

Possible Answers:

\displaystyle \small x=6, y= 672

\displaystyle \small x=2, y=1045

\displaystyle \small x=720, y=3

\displaystyle \small x=135, y=16

\displaystyle \small x=45, y=48

Correct answer:

\displaystyle \small x=45, y=48

Explanation:

We cannot solve the first equation until we know at least one of the variables, so let's solve the second equation first to solve for \displaystyle \small y. We therefore get:

\displaystyle \small \frac{224}{y}=\frac{14}{3}\rightarrow14y=672\rightarrow y=48

With our \displaystyle \small y, we can now find x using the first equation:

\displaystyle \small \frac{x}{108}=\frac{20}{48}\rightarrow48x=2160\rightarrow x=45

We therefore get the correct answer of \displaystyle \small x=45 and \displaystyle \small y=48.

Example Question #2 : Proportionalities

If an object is hung on a spring, the elongation of the spring varies directly with the mass of the object. A 33 kilogram object increases the length of a spring by exactly 6.6 centimeters. To the nearest tenth of a kilogram, how much mass must an object posess to increase the length of that same spring by exactly 10 centimeters?

Possible Answers:

\displaystyle 50 \textrm{ kg}

\displaystyle 100 \textrm{ kg}

\displaystyle 200 \textrm{ kg}

\displaystyle 40 \textrm{ kg}

\displaystyle 80 \textrm{ kg}

Correct answer:

\displaystyle 50 \textrm{ kg}

Explanation:

Let \displaystyle M,L be the mass of the weight and the elongation of the spring, respectively. Then for some constant of variation \displaystyle k

\displaystyle L = kM.

We can find \displaystyle k by setting \displaystyle M = 33,L=6.6:

\displaystyle 6.6 = k \cdot 33

\displaystyle k = 6.6 \div 33 = 0.2

Therefore \displaystyle L = 0.2 M.

Set \displaystyle L = 10 and solve for \displaystyle M:

\displaystyle 10= 0.2 M

\displaystyle M = 10 \div 0.2 = 50 kilograms

Example Question #2 : Direct Proportionality

If \displaystyle a is directly proportional to \displaystyle b and when \displaystyle a=24 at \displaystyle b=12, what is the value of the constant of proportionality?

 

Possible Answers:

\displaystyle 1

\displaystyle 2

\displaystyle 1.5

\displaystyle 2.5

\displaystyle 3

Correct answer:

\displaystyle 2

Explanation:

The general formula for direct proportionality is

\displaystyle a=kb

where \displaystyle k is the proportionality constant. To find the value of this \displaystyle k, we plug in \displaystyle a=24 and \displaystyle b=12

\displaystyle 24=12k

Solve for \displaystyle k by dividing both sides by 12

\displaystyle \frac{24}{12}=\frac{12k}{12}

\displaystyle 2=k

So \displaystyle k=2.

Learning Tools by Varsity Tutors