Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #431 : Intermediate Single Variable Algebra

Which of the following equations is equivalent to  after completing the square?

Possible Answers:

Correct answer:

Explanation:

In order to complete the square, divide the coefficient  in the equation  by two and square the quantity.

This value must be added to both sides of the equation.

Factorize the left side and simplify the right side.

The answer is:  

Example Question #271 : Quadratic Equations And Inequalities

What will be the equation after completing the square?   

Possible Answers:

Correct answer:

Explanation:

To complete the square, we will need to divide the coefficient of the x-variable on the left side of the equation.

Square this number, and add it on both sides of the equation.

Notice that the left side of the equation can be factorized by a single binomial squared.  Simplify the right side as well.

The answer is:  

Example Question #46 : Completing The Square

Solve by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #47 : Completing The Square

Solve the following quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #48 : Completing The Square

Solve the following quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #49 : Completing The Square

Solve the following quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by dividing the entire equation by the coefficient in front of , which is .

Then, move the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #50 : Completing The Square

Solve the quadratic equation by completing the square: 

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #51 : Completing The Square

Solve the following quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

 

Example Question #121 : Solving Quadratic Equations

Solve the quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by dividing the entire equation by the coefficient in front of , which is .

Then, move the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Example Question #122 : Solving Quadratic Equations

Solve the quadratic equation by completing the square:

Possible Answers:

Correct answer:

Explanation:

Start by moving the number to the right of the equation so that all the terms with  values are alone:

Now, you need to figure out what number to add to both sides. To do so, take the coefficient in front of the  term, divide it by , then square it:

Coefficient: 

Add this number to both sides of the equation:

Simplify the left side of the equation.

Now solve for .

, or

Make sure to round to  places after the decimal.

Learning Tools by Varsity Tutors