Algebra 1 : Linear Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #611 : Linear Equations

Solve for \displaystyle x:

\displaystyle \frac{1}{2}x-6=3

Possible Answers:

\displaystyle x=-6

\displaystyle x=12

\displaystyle x=-3

\displaystyle x=18

Correct answer:

\displaystyle x=18

Explanation:

\displaystyle \frac{1}{2}x-6=3

Add \displaystyle 6 to both sides of the equation.

\displaystyle \frac{1}{2}x-6+6=3+6

\displaystyle \frac{1}{2}x=9

Multiply both sides of the equation by \displaystyle 2.

\displaystyle \frac{1}{2}x(2)=9(2)

\displaystyle x=18

Example Question #612 : Linear Equations

Solve for \displaystyle a:

\displaystyle \frac{1}{5}a-7=-2

Possible Answers:

\displaystyle a=12

\displaystyle a=-45

\displaystyle a=21

\displaystyle a=25

Correct answer:

\displaystyle a=25

Explanation:

\displaystyle \frac{1}{5}a-7=-2

Add \displaystyle 7 to both sides of the equation.

\displaystyle \frac{1}{5}a-7+7=-2+7

\displaystyle \frac{1}{5}a=5

Multiply both sides of the equation by \displaystyle 5.

\displaystyle \frac{1}{5}a(5)=5(5)

\displaystyle a=25

Example Question #81 : How To Solve Two Step Equations

Solve for \displaystyle b:

\displaystyle 12b+56=200

Possible Answers:

\displaystyle b=14

\displaystyle b=\frac{64}{3}

\displaystyle b=-20

\displaystyle b=12

Correct answer:

\displaystyle b=12

Explanation:

\displaystyle 12b+56=200

Subtract \displaystyle 56 from both sides of the equation.

\displaystyle 12b+56-56=200-56

\displaystyle 12b=144

Divide both sides of the equation by \displaystyle 12.

\displaystyle \frac{12b}{12}=\frac{144}{12}

\displaystyle b=12

Example Question #82 : How To Solve Two Step Equations

Solve for \displaystyle c:

\displaystyle -\frac{1}{3}c+9=6

Possible Answers:

\displaystyle c=-1

\displaystyle c=6

\displaystyle c=-3

\displaystyle c=9

Correct answer:

\displaystyle c=9

Explanation:

\displaystyle -\frac{1}{3}c+9=6

Subtract \displaystyle 9 from both sides of the equation.

\displaystyle -\frac{1}{3}c+9-9=6-9

\displaystyle -\frac{1}{3}c=-3

Multiply both sides of the equation by \displaystyle -3.

\displaystyle -\frac{1}{3}c(-3)=-3(-3)

\displaystyle c=9

Example Question #83 : How To Solve Two Step Equations

Solve for \displaystyle d:

\displaystyle \frac{4}{5}d+16=20

Possible Answers:

\displaystyle d=\frac{7}{4}

\displaystyle d=5

\displaystyle d=4

\displaystyle d=10

Correct answer:

\displaystyle d=5

Explanation:

\displaystyle \frac{4}{5}d+16=20

Subtract \displaystyle 16 from both sides of the equation.

\displaystyle \frac{4}{5}d+16-16=20-16

\displaystyle \frac{4}{5}d=4

Multiply both sides of the equation by \displaystyle \frac{5}{4}.

\displaystyle \left ( \frac{5}{4}\right )\frac{4}{5}d=\frac{4}{1}\left ( \frac{5}{4} \right )

\displaystyle d=\frac{20}{4}

\displaystyle d=5

Example Question #84 : How To Solve Two Step Equations

Solve for \displaystyle e:

\displaystyle -7e+16=219

Possible Answers:

\displaystyle e=12

\displaystyle e=1

\displaystyle e=-24

\displaystyle e=-29

Correct answer:

\displaystyle e=-29

Explanation:

\displaystyle -7e+16=219

Subtract \displaystyle 16 from both sides of the equation.

\displaystyle -7e+16-16=219-16

\displaystyle -7e=203

Divide both sides of the equation by \displaystyle -7.

\displaystyle \frac{-7c}{-7}=\frac{203}{-7}

\displaystyle e=-29

Example Question #85 : How To Solve Two Step Equations

Solve for \displaystyle f:

\displaystyle 6f+9=117

Possible Answers:

\displaystyle f=21

\displaystyle f=18

\displaystyle f=12

\displaystyle f=24

Correct answer:

\displaystyle f=18

Explanation:

\displaystyle 6f+9=117

Subtract \displaystyle 9 from both sides of the equation.

\displaystyle 6f+9-9=117-9

\displaystyle 6f=108

Divide both sides of the equation by \displaystyle 6.

\displaystyle \frac{6f}{6}=\frac{108}{6}

\displaystyle f=18

Example Question #86 : How To Solve Two Step Equations

Solve for \displaystyle g:

\displaystyle 17-\frac{1}{4}g=2

Possible Answers:

\displaystyle g=-24

\displaystyle g=-14

\displaystyle g=60

\displaystyle g=31

Correct answer:

\displaystyle g=60

Explanation:

\displaystyle 17-\frac{1}{4}g=2

Subtract \displaystyle 17 from both sides of the equation.

\displaystyle 17-17-\frac{1}{4}g=2-17

\displaystyle -\frac{1}{4}g=-15

Multiply both sides by \displaystyle -4.

\displaystyle (-4)-\frac{1}{4}g=-15(-4)

\displaystyle g=60

Example Question #617 : Algebra 1

Solve for \displaystyle c:

\displaystyle 0.25c+4=-1

Possible Answers:

\displaystyle c=-\frac{5}{4}

\displaystyle c=-20

\displaystyle c=-10

\displaystyle c=\frac{7}{4}

Correct answer:

\displaystyle c=-20

Explanation:

\displaystyle 0.25c+4=-1

Subtract \displaystyle 4 from both sides of the equation.

\displaystyle 0.25c+4-4=(-1)-4

\displaystyle 0.25c=-5

Divide both sides of the equation by \displaystyle 0.25.

\displaystyle \frac{0.25c}{0.25}=\frac{-5}{0.25}

Substitute \displaystyle 4 for \displaystyle 0.25 because:

\displaystyle 0.25=\frac{1}{4}

\displaystyle c=\frac{5}{4}

\displaystyle c=-20

Example Question #87 : How To Solve Two Step Equations

Solve for \displaystyle a:

\displaystyle 3a+5=17

Possible Answers:

\displaystyle a=2

\displaystyle a=4

\displaystyle a=-4

\displaystyle a=\frac{22}{3}

Correct answer:

\displaystyle a=4

Explanation:

\displaystyle 3a+5=17

Subtract \displaystyle 5 from both sides of the equation.

\displaystyle 3a+5-5=17-5

\displaystyle 3a=12

Divide both sides of the equation by \displaystyle 3.

\displaystyle \frac{3a}{3}=\frac{12}{3}

\displaystyle a=4

Learning Tools by Varsity Tutors