Algebra 1 : Linear Equations

Study concepts, example questions & explanations for Algebra 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Solve One Step Equations

What is the solution of 3x = 9? 

Possible Answers:

6

3

–6

1/3

–3

Correct answer:

3

Explanation:

When solving a one step equation like this, we do the inverse operation to isolate the variable. In this case, we have 3x = 9, so we divide both sides by 3 to get x = 3. 

3x = 9

(3x)/3 = (9)/3

x = 3

Example Question #1 : Linear Equations

Identify the imaginary part of the following complex number:

\displaystyle 1-3i

Possible Answers:

\displaystyle -3

\displaystyle 1-3i

\displaystyle -2

\displaystyle i

\displaystyle 1

Correct answer:

\displaystyle -3

Explanation:

A complex number in its standard form is of the form: \displaystyle a+bi, where \displaystyle a stands for the real part and \displaystyle b stands for the imaginary part. The symbol \displaystyle i stands for \displaystyle \sqrt{-1}.

The imaginary part is \displaystyle -3.

Example Question #2 : How To Solve One Step Equations

Find the conjugate of \displaystyle 1-3i.

Possible Answers:

\displaystyle 3i-1

\displaystyle 1

\displaystyle 1+3i

\displaystyle 1-3i

\displaystyle 3i

Correct answer:

\displaystyle 1+3i

Explanation:

The conjugate is \displaystyle 1+3i so that when \displaystyle 1-3i is multiplied by its conjugate we get

\displaystyle 1^{2}-\left (3i^{} \right )^{2} = 1 - 9\left ( i^{2} \right )

Since \displaystyle i^{2}= -1

we get

\displaystyle 1-9(-1)=10.

Example Question #3 : How To Solve One Step Equations

Identify the real part of \displaystyle -3i.

Possible Answers:

\displaystyle 0

\displaystyle -3

\displaystyle i

\displaystyle -i

\displaystyle 3

Correct answer:

\displaystyle 0

Explanation:

A complex number in its standard form is of the form: \displaystyle a+bi, where \displaystyle a stands for the real part and \displaystyle b stands for the imaginary part. The symbol \displaystyle i stands for \displaystyle \sqrt{-1}.

The real part is 0.

In this problem there is no real part. Hence the real part equals 0.

Example Question #1 : Algebra 1

Identify the imaginary part of \displaystyle -3i.

Possible Answers:

\displaystyle i

\displaystyle -3

\displaystyle -i

\displaystyle 3

\displaystyle 0

Correct answer:

\displaystyle -3

Explanation:

A complex number in its standard form is of the form: \displaystyle a+bi, where \displaystyle a stands for the real part and \displaystyle b stands for the imaginary part. The symbol \displaystyle i stands for \displaystyle \sqrt{-1}.

The imaginary part equals \displaystyle -3 based on the definition of a complex number in standard form which is \displaystyle a+bi.

 

Example Question #4 : How To Solve One Step Equations

Identify the conjugate of \displaystyle -3i.

Possible Answers:

\displaystyle -3

\displaystyle 3i

\displaystyle -3i

\displaystyle -i

\displaystyle i

Correct answer:

\displaystyle 3i

Explanation:

The conjugate of an imaginary number is the opposite of the given imaginary part. For example the conjugate of \displaystyle 3i is \displaystyle -3i and conjugate of \displaystyle -3i equals \displaystyle 3i

Example Question #1 : Algebra 1

Find the conjugate of \displaystyle -4.

Possible Answers:

\displaystyle -i

\displaystyle -4i

\displaystyle -4

\displaystyle i

\displaystyle 4i

Correct answer:

\displaystyle -4

Explanation:

Since \displaystyle -4 is a real number its conjugate is also \displaystyle -4.

Example Question #5 : How To Solve One Step Equations

Solve for \displaystyle x:

\displaystyle \frac{4}{3}x-\frac{5}{6}=4

Possible Answers:

\displaystyle 4\frac{2}{3}

\displaystyle 5\frac{1}{8}

None of the available answers

\displaystyle 3\frac{5}{6}

\displaystyle 3\frac{5}{8}

Correct answer:

\displaystyle 3\frac{5}{8}

Explanation:

\displaystyle \frac{4}{3}x-\frac{5}{6}=4

First we will add \displaystyle \frac{5}{6} to both sides.

\displaystyle \frac{4}{3}x=4+\frac{5}{6}

\displaystyle \frac{4}{3}x=4\frac{5}{6}

Then we will multiple both sides by \displaystyle \frac{3}{4} to isolate \displaystyle x.

\displaystyle x=4\frac{5}{6}\cdot\frac{3}{4}=(4+\frac{5}{6})\cdot\frac{3}{4}=\frac{12}{4}+\frac{15}{24}=3\frac{15}{24}=3\frac{5}{8}

Example Question #2 : How To Solve One Step Equations

Solve for \displaystyle x:

\displaystyle x+17=12

Possible Answers:

\displaystyle -29

\displaystyle 29

\displaystyle -5

\displaystyle 5

\displaystyle 15

Correct answer:

\displaystyle -5

Explanation:

\displaystyle x+17-17=12-17

\displaystyle x=-5

Example Question #6 : How To Solve One Step Equations

What is the value of \displaystyle x?

\displaystyle x+5=3x-1

Possible Answers:

\displaystyle 3

\displaystyle 5

\displaystyle 2

\displaystyle 1

\displaystyle 4

Correct answer:

\displaystyle 3

Explanation:

Simplifying for \displaystyle x+5=3x-1 gives you  \displaystyle 2x=6. Thus, the value of \displaystyle x is 3.

Learning Tools by Varsity Tutors