ACT Math : Algebra

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #6 : How To Find F(X)

Let F(x) = x3 + 2x2 – 3 and G(x) = x + 5.  Find F(G(x))

Possible Answers:

x3 + 17x2 + 95x + 172

x3 + x2 + 2

x3x2x + 8

x3 + 2x2 – x – 8

x3 + 2x2 + x + 2

Correct answer:

x3 + 17x2 + 95x + 172

Explanation:

F(G(x)) is a composite function where the expression G(x) is substituted in for x in F(x)

F(G(x)) = (x + 5)3 + 2(x + 5)2 – 3 = x3 + 17x2 + 95x + 172

G(F(x)) = x3 + x2 + 2

F(x) – G(x) = x3 + 2x2 – x – 8

F(x) + G(x) =  x3 + 2x2 + x + 2

Example Question #7 : How To Find F(X)

What is the value of xy2(xy – 3xy) given that = –3 and = 7?

Possible Answers:

2881

–6174

3565

–2881

Correct answer:

–6174

Explanation:

Evaluating yields –6174.

–147(–21 + 63) =

–147 * 42 = –6174

Example Question #4 : Algebraic Functions

f(x)=x^{2}+2

g(x)=x-4

Find g(f(2)).

Possible Answers:

\dpi{100} \small 1

\dpi{100} \small 4

\dpi{100} \small 2

\dpi{100} \small 6

\dpi{100} \small 3

Correct answer:

\dpi{100} \small 2

Explanation:

g(f(2)) is \dpi{100} \small 2. To start, we find that f(2)=2^{2}+2=4+2=6. Using this, we find that g(6)=6-4=2.

Alternatively, we can find that g(f(x))=(x^{2}+2)-4=x^{2}-2. Then, we find that g(f(2))=2^{2}-2=4-2=2.

Example Question #8 : How To Find F(X)

It takes no more than 40 minutes to run a race, but at least 30 minutes. What equation will model this in m minutes?

Possible Answers:

\left | m-35 \right |< 5

\left | m+35 \right |< 5

\left | m-35 \right |= 5

\left | m+35 \right |> 5

\left | m-35 \right |> 5

Correct answer:

\left | m-35 \right |< 5

Explanation:

If we take the mean number of minutes to be 35, then we need an equation which is less than 5 from either side of 35. If we subtract 35 from m minutes and take the absolute value, this will give us our equation since we know that the time it takes to run the marathon is between 30 and 40 minutes.

Example Question #1181 : Algebra

If \small f(x) = 4x^{2}+3x+2 and \small g(x) = x+7, what is \small f(g(x))?

Possible Answers:

\small 4x^{2}+3x+219

\small 4x^{2}+3x+72

\small 4x^{2}+17x+219

\small 4x^{2}+59x+219

\small 4x^{2}+17x+72

Correct answer:

\small 4x^{2}+59x+219

Explanation:

\small 4(x+7)^{2} +3(x+7)+2

\small 4(x^{2} + 14x + 49)+ 3x +21 + 2

\small 4x^{2}+56x+196+3x+23

\small 4x^{2}+59x+219

Example Question #1182 : Algebra

If  and , which of the following could represent ?

Possible Answers:

Correct answer:

Explanation:

The number in the parentheses is what goes into the function.

For the function ,

 and

Example Question #11 : How To Find F(X)

A function F is defined as follows:

for x2 > 1, F(x) = 4x2 + 2x – 2

for x2 < 1, F(x) = 4x2 – 2x + 2

What is the value of F(1/2)?

Possible Answers:

Correct answer:

Explanation:

For F(1/2), x2=1/4, which is less than 1, so we use the bottom equation to solve. This gives F(1/2)= 4(1/2)2 – 2(1/2) + 2 = 1 – 1 + 2 = 2

Example Question #31 : Algebraic Functions

Which of the statements describes the solution set for 7(x + 3) = 7x + 20 ? 

Possible Answers:

There are no solutions.

All real numbers are solutions.

x = 1

x = 0

Correct answer:

There are no solutions.

Explanation:

By distribution we obtain 7x – 21 = – 7x + 20. This equation is never possibly true.

Example Question #1183 : Algebra

Will just joined a poetry writing group in town that meets once a week. The number of poems Will has written after a certain number of meetings can be represented by the function , where  represents the number of meetings Will has attended. Using this function, how many poems has Will written after 7 classes?

Possible Answers:

Correct answer:

Explanation:

For this function, simply plug 7 in for  and solve:

Example Question #13 : How To Find F(X)

If f(x)=x^{2}+3, then f(x+h)= ?

Possible Answers:

x^{2}+h^{2}+3

x^{2}+3+h

x^{2}+2xh+h^{2}

x^{2}+h^{2}

x^{2}+2xh+h^{2}+3

Correct answer:

x^{2}+2xh+h^{2}+3

Explanation:

To find f(x+h) when f(x)=x^{2}+3, we substitute (x+h) for x in f(x).

Thus, f(x+h)=(x+h)^{2}+3.

We expand (x+h)^{2}  to x^{2}+xh+xh+h^{2}.

We can combine like terms to get x^{2}+2xh+h^{2}.

We add 3 to this result to get our final answer.

Learning Tools by Varsity Tutors