ACT Math : ACT Math

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #521 : Arithmetic

Evaluate:  \(\displaystyle 102-18\)

Possible Answers:

\(\displaystyle 94\)

\(\displaystyle 82\)

\(\displaystyle 80\)

\(\displaystyle 84\)

\(\displaystyle 90\)

Correct answer:

\(\displaystyle 84\)

Explanation:

First solve by evaluating the ones digit.  Carry over a 1 from the \(\displaystyle 10\) so that the value of the ones digit can be evaluated.

\(\displaystyle 12-8=4\)

After the carry over, the \(\displaystyle 10\) becomes a \(\displaystyle 9\).  This value will be used for the tens digit of the next term.  The hundreds digit will become zero.

Evaluate the tens digit.

\(\displaystyle 9-1=8\)

Combine the tens digit and the ones digit.

The final answer is \(\displaystyle 84\).

Example Question #1 : How To Subtract Even Numbers

Solve:

\(\displaystyle 128-68\)

Possible Answers:

\(\displaystyle 55\)

\(\displaystyle 70\)

\(\displaystyle 60\)

\(\displaystyle 50\)

Correct answer:

\(\displaystyle 60\)

Explanation:

1. First subtract the ones digits:

\(\displaystyle 8-8=0\)

So the ones digit will be a 0.

2. Next subtract the tens digit borrowing the 1 from the hundreds digit:

\(\displaystyle 12-6=6\)

So the tens digit will be a 6.

3. Add the tens and ones digits together:

\(\displaystyle 60+0=60\)

Example Question #2 : How To Subtract Even Numbers

Solve:

\(\displaystyle 274-88\)

Possible Answers:

\(\displaystyle 184\)

\(\displaystyle 186\)

\(\displaystyle 190\)

\(\displaystyle 188\)

Correct answer:

\(\displaystyle 186\)

Explanation:

1. First subtract the ones digits borrowing a 1 from the tens digit:

\(\displaystyle 14-8=6\)

So the ones digit will be a 6.

2. Next subtract the tens digit borrowing the 1 from the hundreds digit:

\(\displaystyle 16-8=8\)

So the tens digit will be a 8.

3. Next add the hundreds, tens and ones digits together:

\(\displaystyle 100+80+6=186\)

Example Question #1 : How To Add Even Numbers

Which of the following expressions is odd for any integers \(\displaystyle a\) and \(\displaystyle b\)?

Possible Answers:

\(\displaystyle 4(a+5b+1)\)

\(\displaystyle 4b-2a+3\)

\(\displaystyle 5a-3b\)

\(\displaystyle 2a+3b\)

All the expressions can be even for some combination of \(\displaystyle a\) and \(\displaystyle b\)

Correct answer:

\(\displaystyle 4b-2a+3\)

Explanation:

The key here is for any integers \(\displaystyle a\) and \(\displaystyle b\), that means that no matter what you set \(\displaystyle a\) and \(\displaystyle b\) equal to you will get an odd number. An odd number is not divisible by 2, also it is an even number plus and odd number. The only expression that satisfies this is \(\displaystyle 4b-2a+3\)\(\displaystyle 4b\) will always be even, so will \(\displaystyle -2a\), but \(\displaystyle 3\) is always odd so the combination gives us an odd number, always.

Example Question #2 : How To Add Even Numbers

Evaluate:  \(\displaystyle 998+1002\)

Possible Answers:

\(\displaystyle 2016\)

\(\displaystyle 1996\)

\(\displaystyle 2810\)

\(\displaystyle 10982\)

\(\displaystyle 2000\)

Correct answer:

\(\displaystyle 2000\)

Explanation:

For this problem, align and solve by adding the ones digit \(\displaystyle (8+2)\), tens digit \(\displaystyle (9+0+ carried\:1)\), and hundreds digit \(\displaystyle (9+carried\:1)\). This also means that you have to add \(\displaystyle 1\) to the \(\displaystyle 1\) in the thousands place to get \(\displaystyle 2\)

\(\displaystyle 998+1002=2000\)

Example Question #2 : How To Add Even Numbers

Find the sum of 12 and 42.

Possible Answers:

\(\displaystyle 54\)

\(\displaystyle 31\)

\(\displaystyle 52\)

\(\displaystyle 30\)

\(\displaystyle 64\)

Correct answer:

\(\displaystyle 54\)

Explanation:

Rewrite the question into a mathematical expression.

\(\displaystyle 12+42\)

Add the ones digit. 

\(\displaystyle 2+2=4\)

Add the tens digit.

\(\displaystyle 1+4=5\)

Combine the tens digit and the ones digit. The answer is \(\displaystyle 54\).

Example Question #11 : Integers

Solve:  \(\displaystyle 80\div6\)

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle \frac{40}{3}\)

\(\displaystyle 13.3\)

\(\displaystyle 14.5\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle \frac{40}{3}\)

Explanation:

This problem can be solved using common factors.  

Rewrite \(\displaystyle 80\div6\) using factors.  

\(\displaystyle \frac{80}{6}=\frac{2 \cdot 40}{2 \cdot 3} = \frac{40}{3}\)

Example Question #12 : Integers

Divide: \(\displaystyle 1028\div1004\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle \frac{257}{251}\)

\(\displaystyle \frac{267}{256}\)

\(\displaystyle 1.023\)

\(\displaystyle \frac{6}{5}\)

Correct answer:

\(\displaystyle \frac{257}{251}\)

Explanation:

Rewrite  \(\displaystyle 1028\div1004\) by using common factors. Reduce to the simplest form.

\(\displaystyle \frac{1028}{1004}=\frac{2\cdot 514}{2\cdot 502} = \frac{2\cdot 2\cdot257}{2\cdot 2\cdot251}=\frac{257}{251}\)

Example Question #13 : Integers

Divide:  \(\displaystyle 2032\div 234\)

Possible Answers:

\(\displaystyle \frac{38}{17}\)

\(\displaystyle 8.6\)

\(\displaystyle \frac{106}{17}\)

\(\displaystyle 8.7\)

\(\displaystyle \frac{1016}{117}\)

Correct answer:

\(\displaystyle \frac{1016}{117}\)

Explanation:

Rewrite \(\displaystyle 2032\div 234\) and use common factors to simplify.

 

\(\displaystyle \frac{2032}{234}=\frac{2\cdot1016}{2\cdot 117}=\frac{1016}{117}\)

Example Question #21 : Integers

Divide: \(\displaystyle 308\div 36\)

Possible Answers:

\(\displaystyle 8.5\)

\(\displaystyle 8.6\)

\(\displaystyle \frac{77}{9}\)

\(\displaystyle 9.6\)

\(\displaystyle \frac{102}{12}\)

Correct answer:

\(\displaystyle \frac{77}{9}\)

Explanation:

Rewrite \(\displaystyle 308\div 36\) by using factors.  Simplify until the answer cannot be reduced any further.

\(\displaystyle \frac{308}{36} = \frac{2\cdot 154}{2\cdot 18} = \frac{2 \cdot 2\cdot 77}{2\cdot 2\cdot 9} = \frac{77}{9}\)

Learning Tools by Varsity Tutors