Trigonometry : Trigonometry

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #631 : Trigonometry

What is the correct formula for the sum of two sines: \displaystyle sin(x) + sin(y)?

 

Possible Answers:

\displaystyle sin(x)+sin(y) = 2sin\frac{x+y}{2}cos\frac{x+y}{2}

\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}

\displaystyle sin(x)+sin(y) = 2cos\frac{x+y}{2}sin\frac{x-y}{2}

\displaystyle sin(x)+sin(y) = 2sin\frac{x+y}{2}sin\frac{x-y}{2}

Correct answer:

\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}

Explanation:

This is a known trigonometry identity.  Whenever you are adding two sine functions, you can plug \displaystyle x and \displaystyle y into the formula to solve for this sum

Example Question #2 : Sum And Difference Of Sines And Cosines

Solve for the following given that \displaystyle x = 2\pi.  Use the formula for the sum of two sines.

 \displaystyle sin(\frac{\pi}{3} +x) + sin(\frac{\pi}{3} - x)

Possible Answers:

\displaystyle \pi

\displaystyle 0

\displaystyle \sqrt{3}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle \sqrt{3}

Explanation:

We begin by considering our formula for the sum of two sines

\displaystyle sin(x) + sin(y) = 2sin\frac{x + y}{2}cos\frac{x-y}{2}

 

 

 

We will let\displaystyle x = \frac{\pi}{3} + x and \displaystyle y = \frac{\pi}{3} - x and plug these values into our formula.

 

\displaystyle sin(\frac{\pi}{3} +x) + sin(\frac{\pi}{3} - x) = 2sin\frac{(\frac{\pi}{3} + x) + (\frac{\pi}{3} - x)}{2}cos\frac{(\frac{\pi}{3} + x) - (\frac{\pi}{3} - x)}{2}

\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2sin\frac{\frac{2\pi}{3}}{2}cos\frac{2x}{2}

\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2sin\frac{\pi}{3}cosx

\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = 2(\frac{\sqrt{3}}{2})(1)

\displaystyle sin(\frac{\pi}{3} + x) + sin(\frac{\pi}{3} - x) = \sqrt{3}

 

Example Question #3 : Sum And Difference Of Sines And Cosines

Solve for the following using the formula for the differences of two cosines.  Do not simplify.

\displaystyle cos(2 + x) - cos(2 - x)

 

Possible Answers:

\displaystyle -2sin(2)sin(x)

\displaystyle 0

\displaystyle -2cos(2)cos(x)

\displaystyle \pi

Correct answer:

\displaystyle -2sin(2)sin(x)

Explanation:

We begin by considering the formula for the differences of two cosines.

\displaystyle cos(x) - cos(y) = -2sin\frac{x + y}{2}sin\frac{x - y}{2}

 

We will let  \displaystyle x = 2+x  and  \displaystyle y = 2 - x.  Proceed by plugging these values into the formula.

\displaystyle cos(2+x) - cos(2 -x) = -2sin\frac{(2+x) + (2 - x)}{2}sin\frac{(2+x) - (2-x)}{2}

\displaystyle cos(2+x) - cos(2 -x) = -2sin\frac{4}{2}sin\frac{2x}{2}

\displaystyle cos(2+x) - cos(2 -x) = -2sin(2)sin(x)

 

 

Example Question #632 : Trigonometry

Which of the following completes the identity \displaystyle cos(\alpha + \beta) =

 

 

Possible Answers:

\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)cos(\beta)

\displaystyle sin(\alpha)sin(\beta) - sin(\alpha)sin(\beta)

\displaystyle cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

\displaystyle cos(\alpha)cos(\beta) - cos(\alpha)cos(\beta)

Correct answer:

\displaystyle cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

Explanation:

This is a known trigonometry identity and has been proven to be true.  It is often helpful to solve for the quantity within a cosine function when there are unknowns or if the quantity needs to be simplified

Example Question #5 : Sum And Difference Of Sines And Cosines

Solve for the following using the correct identity:

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6})

 

 

Possible Answers:

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\sqrt{6} + 2\sqrt{2}

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{2}}{2}

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6}}{4}

Correct answer:

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}

Explanation:

To solve this problem we must use the identity

\displaystyle sin(\alpha + \beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta).  We will let \displaystyle \alpha = \frac{\pi}{4} and  \displaystyle \beta = \frac{\pi}{6}.

 

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) = sin(\frac{\pi}{4})cos(\frac{\pi}{6}) + cos(\frac{\pi}{4})sin(\frac{\pi}{6})

 

 

 

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2}) + (\frac{\sqrt{2}}{2})(\frac{1}{2})

 

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{2}

 

\displaystyle sin(\frac{\pi}{4} + \frac{\pi}{6}) =\frac{\sqrt{6} + 2\sqrt{2}}{4}

Example Question #6 : Sum And Difference Of Sines And Cosines

True or False: To solve for a problem in the form of \displaystyle cos(\alpha - \beta), I use the identity \displaystyle cos(\alpha) - cos(\beta) = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha - \beta}{2}.

Possible Answers:

True 

False

Correct answer:

False

Explanation:

This answer is false.  \displaystyle cos(\alpha - \beta) is not the same as \displaystyle cos(\alpha) - cos(\beta).

For example, say \displaystyle \alpha = \frac{2\pi}{3} and \displaystyle \beta = \frac {\pi}{3}

 

\displaystyle cos(\frac{2\pi}{3} - \frac{\pi}{3}) = cos(\frac{\pi}{3}) = \frac{1}{2}

 

\displaystyle cos(\frac{2\pi}{3}) - cos(\frac{\pi}{3} = -\frac{1}{2} - \frac{1}{2} = -1

 

 

And so the correct identity to use for this is

 

\displaystyle cos(\alpha - \beta) = cos(\alpha)cos(\beta) +sin(\alpha)sin(\beta)

Example Question #7 : Sum And Difference Of Sines And Cosines

Solve for the following using the correct identity:

\displaystyle cos(45 + 30)

Possible Answers:

\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}

\displaystyle cos(45 + 30) = \sqrt{6} - 2\sqrt{2}

\displaystyle cos(45 + 30) = - 2\sqrt{2}

\displaystyle cos(45 + 30) = \frac{\sqrt{2} - 2\sqrt{6}}{4}

Correct answer:

\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}

Explanation:

The correct identity to use for this kind of problem is

\displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)We will let \displaystyle \alpha = 45 = \frac{\pi}{4}  and   \displaystyle \beta = 30 = \frac{\pi}{6}.

 

\displaystyle cos(45 + 30) = cos(45)cos(30) - sin(45)sin(30)

 

\displaystyle cos(45 + 30) = cos(\frac{\pi}{4})cos(\frac{\pi}{6}) - sin(\frac{\pi}{4})sin(\frac{\pi}{6})

\displaystyle cos(45 + 30) = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2}) - (\frac{\sqrt{2}}{2})(\frac{1}{2})

\displaystyle cos(45 + 30) = \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}

\displaystyle cos(45 + 30) = \frac{\sqrt{6} - 2\sqrt{2}}{4}

Example Question #633 : Trigonometry

Which of the following is the correct to complete the following identity: \displaystyle sin(\alpha - \beta) = ___?

Possible Answers:

\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)sin(\beta)

\displaystyle sin(\alpha)cos(\alpha) - cos(\beta)sin(\beta)

\displaystyle sin(\alpha)sin(\beta) - sin(\alpha)sin(\beta)

\displaystyle cos(\alpha)cos(\beta) - cos(\alpha)cos(\beta)

Correct answer:

\displaystyle sin(\alpha)cos(\beta) - cos(\alpha)sin(\beta)

Explanation:

This is a known trigonometry identity and has been proven to be true.  It is often helpful to solve for the quantity within a cosine function when there are unknowns or if the quantity needs to be simplified

Example Question #1 : Product Of Sines And Cosines

Which of the following completes the identity \displaystyle cos(\alpha)cos(\beta) =

Possible Answers:

\displaystyle \frac{1}{2}[cos(\alpha +\beta)+sin(\alpha - \beta)]

\displaystyle \frac{1}{2}[sin(\alpha +\beta)+sin(\alpha - \beta)]

\displaystyle \frac{1}{2}[sin(\alpha +\beta)+cos(\alpha - \beta)]

\displaystyle \frac{1}{2}[cos(\alpha +\beta)+cos(\alpha - \beta)]

Correct answer:

\displaystyle \frac{1}{2}[cos(\alpha +\beta)+cos(\alpha - \beta)]

Explanation:

This formula is able to be derived directly from the identities for the sum and difference of cosines, .

 

   \displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

\displaystyle +cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)

 


 

\displaystyle cos(\alpha + \beta) + cos(\alpha - \beta) = 2cos(\alpha)cos(\beta)



 

 

Example Question #2 : Product Of Sines And Cosines

Derive the product of sines from the identities for the sum and differences of trigonometric functions.

Possible Answers:

\displaystyle sin(\alpha+\beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta)

\displaystyle -sin(\alpha - \beta) = sin(\alpha)cos(\beta) - cos(\alpha)sin(\beta)

 


 

\displaystyle sin(\alpha + \beta) + sin(\alpha - \beta) = 2sin(\alpha)cos(\beta)



 

 

\displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

\displaystyle -cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)

 


 

\displaystyle cos(\alpha + \beta) - cos(\alpha- \beta) = -2sin(\alpha)sin(\beta)



 

 

\displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

\displaystyle +cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)

 


 

\displaystyle cos(\alpha + \beta) + cos(\alpha - \beta) = 2cos(\alpha)cos(\beta)



 

 

 

 

Correct answer:

\displaystyle cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)

\displaystyle -cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)

 


 

\displaystyle cos(\alpha + \beta) - cos(\alpha- \beta) = -2sin(\alpha)sin(\beta)



 

 

Explanation:

First, we must know the formula for the product of sines so that we know what we are searching for.  The formula for this identity is \displaystyle sin(\alpha)sin(\beta) = \frac{1}{2}[cos(\alpha -\beta) - cos(\alpha + \beta)].  Using the known identities of the sum/difference of cosines, we are able to derive the product of sines in this way.  Sometimes it is helpful to be able to expand the product of trigonometric functions as sums.  It can either simplify a problem or allow you to visualize the function in a different way.

Learning Tools by Varsity Tutors