Trigonometry : Angles

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #12 : Angles In Different Quadrants

Which angle is not in quadrant III?

Possible Answers:

\displaystyle \small \frac{5 \pi}{4 }

\displaystyle \small \frac{19 \pi}{6 }

\displaystyle \small \frac{-11 \pi}{4 }

\displaystyle \small \frac{-8 \pi}{3 }

\displaystyle \small \frac{7 \pi}{3}

Correct answer:

\displaystyle \small \frac{7 \pi}{3}

Explanation:

First lets identify the angles that make up the third quadrant. Quadrant three is \displaystyle 180^\circ to \displaystyle 270^\circ or in radians, \displaystyle \pi to \displaystyle \frac{3\pi}{2} thus, any angle that does not fall within this range is not in quadrant three.

Therefore, the correct answer,

\displaystyle \small \frac{7\pi}{3} is not in quadrant three because it is in the first quadrant.

This is clear when we subtract

\displaystyle \small \frac{7\pi}{3} - 2 \pi = \frac{7 \pi}{3} - \frac{6\pi}{3} = \frac{\pi }{3}.

Example Question #13 : Angles In Different Quadrants

Which two angles are both in the same quadrant?

Possible Answers:

\displaystyle \small \frac{13\pi}{4} and \displaystyle \small \frac{-\pi}{6}

\displaystyle \small \frac{-4\pi}{3} and \displaystyle \small \frac{9\pi}{4}

\displaystyle \small \frac{-2\pi}{3} and \displaystyle \small \frac{13\pi}{4}

\displaystyle \small \small \frac{11\pi}{6} and \displaystyle \small \frac{\pi}{4}

\displaystyle \small \frac{-2\pi}{3} and \displaystyle \frac{-4\pi}{3}

Correct answer:

\displaystyle \small \frac{-2\pi}{3} and \displaystyle \small \frac{13\pi}{4}

Explanation:

First lets identify the different quadrants.

Quadrant I:\displaystyle 0\rightarrow \frac{\pi}{2}

Quadrant II: \displaystyle \frac{\pi}{2}\rightarrow \pi

Quadrant III: \displaystyle \pi \rightarrow \frac{3\pi}{2}

Quadrant IV: \displaystyle \frac{3\pi}{2}\rightarrow 2\pi

Now looking at our possible answer choices, we will add or subtract \displaystyle 2\pi until we get the reduced fraction of the angle. This will tell us which quadrant the angle lies in.

\displaystyle \small \frac{-2\pi}{3}+2\pi=\frac{-2\pi}{3}+\frac{6\pi}{3}=\frac{4\pi}{3} thus in quadrant III. 

\displaystyle \small \frac{13\pi}{4}-2\pi=\frac{13\pi}{4}-\frac{8\pi}{4}=\frac{5\pi}{4} thus in quadrant III.

Therefore,

\displaystyle \small \frac{-2\pi}{3} and \displaystyle \small \frac{13\pi}{4} is the correct answer.

Example Question #14 : Angles In Different Quadrants

Which angle is in quadrant II?

Possible Answers:

\displaystyle \small \frac{-\pi}{4}

\displaystyle \small \frac{-4\pi}{3}

\displaystyle \small \frac{-5\pi}{3}

\displaystyle \small \frac{-\pi}{2}

\displaystyle \small \frac{-2\pi}{3}

Correct answer:

\displaystyle \small \frac{-4\pi}{3}

Explanation:

 

First lets identify the different quadrants.

Quadrant I:\displaystyle 0\rightarrow \frac{\pi}{2}

Quadrant II: \displaystyle \frac{\pi}{2}\rightarrow \pi

Quadrant III: \displaystyle \pi \rightarrow \frac{3\pi}{2}

Quadrant IV: \displaystyle \frac{3\pi}{2}\rightarrow 2\pi

The correct answer,\displaystyle \small \frac{-4\pi}{3}, is coterminal with \displaystyle \small \frac{2\pi}{3}.

We can figure this out by adding \displaystyle \small 2\pi, or equivalently \displaystyle \small \frac{6\pi}{3} to get \displaystyle \small \frac{2\pi}{3}, or we can count thirds of pi around the unit circle clockwise. Either way, it is the only angle that ends in the second quadrant.

Example Question #15 : Angles In Different Quadrants

In which angle would a \displaystyle 50000^o angle terminate in?

Possible Answers:

Between quadrants

Quadrant IV

Quadrant I

Quadrant III

Quadrant II

Correct answer:

Quadrant IV

Explanation:

One way to uncover which quadrant this angle lies is to ask how many complete revolutions this angle makes by dividing it by 360 (and rounding down to the nearest whole number).

With a calculator we find that \displaystyle 50000^o makes \displaystyle 138 full revolutions. Now the key lies in what the remainder the angle makes with \displaystyle 138 revolutions:

\displaystyle 50000^o - 138 * 360^o = 320^o

\displaystyle 270^o < 320^o < 360^o, therefore our angle lies in the fourth quadrant.

Alternatively, we could find evaluate \displaystyle sin \ 50000^o and \displaystyle cos \ 50000^o.

The former (sine) gives us a negative number whereas the latter (cosine) gives a positive. The only quadrant in which sine is negative and cosine is positive is the fourth quadrant.

 

Example Question #16 : Angles In Different Quadrants

Which quadrant does \displaystyle 135^\circ belong?

Possible Answers:

II

IV

III

I

Correct answer:

II

Explanation:

Step 1: Define the quadrants and the angles that go in:

QI:

\displaystyle 0^\circ< x\leq 90^\circ


QII:

\displaystyle 90^\circ < x \leq 180^\circ


QIII:

\displaystyle 180^\circ < x \leq 270^\circ


QIV:

\displaystyle 270^\circ < x \leq 360

Step 2: Find the quadrant where \displaystyle 135^\circ is:

The angle is located in QII (Quadrant II)

Example Question #17 : Angles In Different Quadrants

The angle \displaystyle \theta=17\pi/4 is in which quadrant?

Possible Answers:

Quadrant IV

Quadrant II

Quadrant I

Quadrant III

Correct answer:

Quadrant I

Explanation:

First, using the unit circle, we can see that the denominator has a four in it, which means it is a multiple of \displaystyle \pi/4.

We want to reduce the angle down until we can visualize which quadrant it is in. You can subtract \displaystyle 2\pi away from the angle each time (because that is just one revolution, and we end up at the same spot).

If you subtract away \displaystyle 2\pi twice, you are left with \displaystyle \pi/4, which is in quadrant I. 

\displaystyle 17\pi/4-8\pi/4-8\pi/4=\pi/4.

Example Question #11 : Angles In Different Quadrants

Which of the following angles lies in the second quadrant?

Possible Answers:

\displaystyle \frac{11\pi }{4}

\displaystyle \frac{\pi }{3}

\displaystyle \frac{4\pi }{3}

\displaystyle \frac{7\pi }{2}

\displaystyle \frac{11\pi }{6}

Correct answer:

\displaystyle \frac{11\pi }{4}

Explanation:

The second quadrant contains angles between \displaystyle \frac{\pi }{2} and \displaystyle \pi, plus those with additional multiples of \displaystyle 2\pi.  The angle \displaystyle \frac{11\pi }{4} is, after subtracting \displaystyle 2\pi, is simply \displaystyle \frac{3\pi }{4}, which puts it in the second quadrant.

Example Question #73 : Angles

Find all angles \displaystyle \theta between \displaystyle 0^\circand \displaystyle 360^\circ when \displaystyle \cos \theta=-.3333.

Possible Answers:

\displaystyle \theta=70.53^\circ

\displaystyle \theta=70.53^\circ and \displaystyle 190.47^\circ

\displaystyle \theta=70.53^\circ and \displaystyle 250.53^\circ

\displaystyle \theta=109.47^\circ and \displaystyle 250.53^\circ

\displaystyle \theta=190.47^\circ

Correct answer:

\displaystyle \theta=109.47^\circ and \displaystyle 250.53^\circ

Explanation:

This problem relies on understanding reference angles and coterminal angles. A reference angle \displaystyle R for an angle \displaystyle \theta in standard position is the positive acute angle between the x axis and the terminal side of the angle \displaystyle \theta. A table of reference angles for each quadrant is given below.

Screen shot 2020 07 30 at 11.05.57 am

Since \displaystyle \cos \theta=-.3333 is negative, solutions for \displaystyle \theta will be in Quadrants II and III because these are the quadrants where cosine is negative.

Use inverse cosine and a calculator to find \displaystyle \theta:

\displaystyle \cos R = -.3333

\displaystyle \cos^-^1(.3333)=70.53^\circ = R

In Quadrant II, we have \displaystyle R=180^\circ-\theta, so \displaystyle \theta=180^\circ-70.53^\circ=109.47^\circ.

In Quadrant III, \displaystyle R=\theta-180^\circ, so \displaystyle \theta=180^\circ+R=180^\circ+70.53^\circ=250.53^\circ

Therefore \displaystyle \theta=109.47^\circ and \displaystyle 250.53^\circ.

Example Question #74 : Angles

Find all angles \displaystyle \theta between \displaystyle 0^\circand \displaystyle 360^\circ when \displaystyle \tan\theta=-1.3456.

Possible Answers:

\displaystyle \theta=53.38^\circ and \displaystyle 306.62^\circ

\displaystyle \theta=126.62^\circand \displaystyle 306.62^\circ

\displaystyle \theta=53.38^\circ and \displaystyle 126.62^\circ

\displaystyle \theta=126.62^\circ

\displaystyle \theta=53.38^\circ

Correct answer:

\displaystyle \theta=126.62^\circand \displaystyle 306.62^\circ

Explanation:

This problem relies on understanding reference angles and coterminal angles. A reference angle \displaystyle R for an angle \displaystyle \theta in standard position is the positive acute angle between the x axis and the terminal side of the angle \displaystyle \theta. A table of reference angles for each quadrant is given below.

Screen shot 2020 07 30 at 11.05.57 am

Since \displaystyle \tan\theta=-1.3456 is negative, solutions for \displaystyle \theta will be in Quadrants II and IV because these are the quadrants where tangent is negative. Use inverse tangent and a calculator to find \displaystyle \theta:

\displaystyle \tan R=-1.3456

\displaystyle \tan^-^1(1.3456)=53.38^\circ=R

In Quadrant II, we have \displaystyle R=180^\circ-\theta,  so \displaystyle \theta=180^\circ-53.38^\circ=126.62^\circ.

In Quadrant IV, \displaystyle R=360^\circ-\theta, so \displaystyle R=360^\circ-53.38^\circ=306.62^\circ.

Therefore \displaystyle \theta=126.62^\circand \displaystyle 306.62^\circ.

Example Question #75 : Angles

Find all angles \displaystyle \theta when \displaystyle \sin \theta=-.1919.

Possible Answers:

\displaystyle \theta=191.06^\circ+n360^\circ and \displaystyle \theta=348.94^\circ+n360^\circ

\displaystyle \theta=191.06^\circ and \displaystyle \theta=348.94^\circ

\displaystyle \theta=11.06^\circ and \displaystyle \theta=191.06^\circ

\displaystyle \theta=11.06^\circ+n360^\circ and \displaystyle \theta=191.06^\circ+n360^\circ

Correct answer:

\displaystyle \theta=191.06^\circ+n360^\circ and \displaystyle \theta=348.94^\circ+n360^\circ

Explanation:

We can use reference angles, inverse trig, and a calculator to solve this problem. Below is a table of reference angles. 

Screen shot 2020 07 30 at 11.05.57 am

We have \displaystyle \sin \theta=-.1919 so \displaystyle \sin^-^1(.1919)=11.06^\circ = R. Next, think about where sine is negative, or reference the Function Signs column of the above table. Sine is negative in Quadrants III and IV.

In Quadrant III, \displaystyle \theta=180^\circ+R=180^\circ+11.06^\circ=191.06^\circ.

In Quadrant IV, \displaystyle \theta=306^\circ-R=360^\circ-11.06^\circ=348.94^\circ.

If this problem asked for values of \displaystyle \theta between \displaystyle 0^\circ and \displaystyle 360^\circ, our work would be done, but this problem does not restrict the range, so we need to give all possible values of \displaystyle \theta by generalizing our answers. To do this, we must understand that all angles that are coterminal to \displaystyle 191.06^\circ and \displaystyle 348.94^\circ will also be solutions. Coterminal angles add or subtract multiples of \displaystyle 360^\circ. To write this generally, we write:

\displaystyle \theta=191.06^\circ+n360^\circ and \displaystyle \theta=348.94^\circ+n360^\circ.

Learning Tools by Varsity Tutors