SSAT Upper Level Math : How to find if two acute / obtuse triangles are similar

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle AB = 24, BC = 30, AC = 36\displaystyle \bigtriangleup DEF has perimeter 400.

Which of the following is equal to \displaystyle DF \div DE?

Possible Answers:

\displaystyle 1.25

\displaystyle 1.2

\displaystyle 1.5

\displaystyle 0.8\overline{3}

\displaystyle 0.\overline{6}

Correct answer:

\displaystyle 1.5

Explanation:

The perimeter of \displaystyle \bigtriangleup DEF is actually irrelevant to this problem. Corresponding sides of similar triangles are in proportion, so use this to calculate \displaystyle DF \div DE, or \displaystyle \frac{DF}{DE}:

\displaystyle \frac{DF}{DE} = \frac{AC}{AB} = \frac{36}{24} = 1.5

 

 

Example Question #2 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle AB = 24, BC = 20, AC = 36\displaystyle \bigtriangleup DEF has perimeter 300.

Evaluate \displaystyle DE + EF.

Possible Answers:

\displaystyle 225

Insufficient information is given to answer the problem.

\displaystyle 200

\displaystyle 165

\displaystyle 210

Correct answer:

\displaystyle 165

Explanation:

The ratio of the perimeters of two similar triangles is equal to the ratio of the lengths of a pair of corresponding sides. Therefore, 

\displaystyle \frac{DE}{AB}= \frac{P_{\bigtriangleup DEF}}{P_{\bigtriangleup ABC }} and \displaystyle \frac{EF}{BC}= \frac{P_{\bigtriangleup DEF}}{P_{\bigtriangleup ABC }}, or

\displaystyle \frac{DE}{AB}=\frac{EF}{BC} = \frac{P_{\bigtriangleup DEF}}{P_{\bigtriangleup ABC }}

By one of the properties of proportions, it follows that

\displaystyle \frac{DE+EF}{AB+BC} = \frac{P_{\bigtriangleup DEF}}{P_{\bigtriangleup ABC }}

The perimeter of \displaystyle \bigtriangleup ABC is

\displaystyle AB+BC+ AC = 24+ 20+ 36 = 80, so

\displaystyle \frac{DE+EF}{24+20} = \frac{300}{80}

\displaystyle \frac{DE+EF}{44} = \frac{300}{80}

\displaystyle \frac{DE+EF}{44} \cdot 44 = \frac{300}{80} \cdot 44

\displaystyle DE+EF=165

Example Question #1 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle AB= 12\displaystyle DE = 40\displaystyle \bigtriangleup DEF has perimeter 90.

Give the perimeter of \displaystyle \bigtriangleup ABC.

Possible Answers:

\displaystyle 53\frac{1}{3}

\displaystyle 36

\displaystyle 360

\displaystyle 27

\displaystyle 300

Correct answer:

\displaystyle 27

Explanation:

The ratio of the perimeters of two similar triangles is the same as the ratio of the lengths of a pair of corresponding sides. Therefore, 

\displaystyle \frac{P_{\bigtriangleup ABC }}{P_{\bigtriangleup DEF}} = \frac{AB}{DE}

\displaystyle \frac{P_{\bigtriangleup ABC }}{90} = \frac{12}{40}

\displaystyle \frac{P_{\bigtriangleup ABC }}{90}\cdot 90 = \frac{12}{40} \cdot 90

\displaystyle P_{\bigtriangleup ABC} = 27

Example Question #2 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF.

\displaystyle m\angle A + m\angle D = 94^{\circ }

\displaystyle m\angle B + m\angle F = 94^{\circ }

Evaluate \displaystyle m \angle C + m \angle E.

Possible Answers:

\displaystyle 86^{\circ }

\displaystyle 188^{\circ }

These triangles cannot exist.

\displaystyle 172^{\circ }

\displaystyle 94^{\circ }

Correct answer:

\displaystyle 172^{\circ }

Explanation:

The similarity of the triangles is actually extraneous information here. The sum of the measures of a triangle is \displaystyle 180 ^{\circ }, so:

\displaystyle m \angle A + m \angle B + m \angle C = 180^{\circ }

\displaystyle m \angle D + m \angle E + m \angle F = 180^{\circ }

\displaystyle m \angle A + m \angle B + m \angle C +m \angle D + m \angle E + m \angle F = 180^{\circ }+ 180^{\circ }

\displaystyle m \angle C + m \angle E + (m \angle A +m \angle D) + (m \angle B + m \angle F )= 360^{\circ }

\displaystyle m \angle C + m \angle E +94 ^{\circ } +94 ^{\circ }= 360^{\circ }

\displaystyle m \angle C + m \angle E +188 ^{\circ }= 360^{\circ }

\displaystyle m \angle C + m \angle E +188 ^{\circ }- 188^{\circ } = 360^{\circ } - 188^{\circ }

\displaystyle m \angle C + m \angle E = 172^{\circ }

Example Question #131 : Properties Of Triangles

Given: \displaystyle \bigtriangleup ABC and \displaystyle \bigtriangleup DEF\displaystyle \angle A \cong \angle D and \displaystyle \angle C \cong \angle F.

Which of the following statements would not be enough, along with what is given, to prove that \displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF?

Possible Answers:

\displaystyle \frac{AB}{DE} = \frac{BC}{EF}

\displaystyle \frac{AB}{DE} = \frac{AC}{DF}

The given information is enough to prove the triangles similar.

\displaystyle \frac{AC}{DF}= \frac{BC}{EF}

\displaystyle \angle B \cong \angle E

Correct answer:

The given information is enough to prove the triangles similar.

Explanation:

Two pairs of corresponding angles are stated to be congruent in the main body of the problem; it follows from the Angle-Angle Similarity Postulate that the triangles are similar. No further information is needed.

Example Question #132 : Properties Of Triangles

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle \frac{AB}{DE} = \frac{25}{36}. Which of the following is the ratio of the area of \displaystyle \bigtriangleup DEF to that of \displaystyle \bigtriangleup ABC ?

Possible Answers:

\displaystyle \frac{625}{1,296}

\displaystyle \frac{6}{5}

\displaystyle \frac{1,296}{625}

\displaystyle \frac{36}{25}

\displaystyle \frac{5}{6}

Correct answer:

\displaystyle \frac{1,296}{625}

Explanation:

 The similarity ratio of \displaystyle \bigtriangleup ABC to \displaystyle \bigtriangleup DEF is equal to the ratio of two corresponding sidelengths, which is given as \displaystyle \frac{25}{36}; the similarity ratio of \displaystyle \bigtriangleup DEF to \displaystyle \bigtriangleup ABC is the reciprocal of this, or \displaystyle \frac{36}{25}.

The ratio of the area of a figure to that of one to which it is similar is the square of the similarity ratio, so the ratio of the area of \displaystyle \bigtriangleup DEF to that of \displaystyle \bigtriangleup ABC is 

\displaystyle \left (\frac{36}{25} \right ) ^{2}= \frac{1,296}{625}

Example Question #5 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle m \angle D = 44 ^{\circ }, m \angle E = 26^{\circ } 

Which of the following is true about \displaystyle \bigtriangleup ABC?

Possible Answers:

\displaystyle \bigtriangleup ABC is scalene and acute.

None of the other responses is correct.

\displaystyle \bigtriangleup ABC is isosceles and acute.

\displaystyle \bigtriangleup ABC is scalene and obtuse.

\displaystyle \bigtriangleup ABC is isosceles and obtuse.

Correct answer:

\displaystyle \bigtriangleup ABC is scalene and obtuse.

Explanation:

Corresponding angles of similar triangles are congruent, so the measures of the angles of \displaystyle \bigtriangleup ABC are equal to those of \displaystyle \bigtriangleup DEF.

Two of the angles of \displaystyle \bigtriangleup DEF have measures \displaystyle 44 ^{\circ } and \displaystyle 26^{\circ }; its third angle measures 

\displaystyle 180^{\circ } - (44^{\circ }+ 26^{\circ } ) = 180^{\circ } - 70 ^{\circ } = 110^{\circ }.

One of the angles having measure greater than \displaystyle 90^{\circ } makes \displaystyle \bigtriangleup DEF - and, consequently, \displaystyle \bigtriangleup ABC - an obtuse triangle. Also, the three angles have different measures, so the sides do as well, making \displaystyle \bigtriangleup ABC scalene.

Example Question #1 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle m \angle A = 66^{\circ }\displaystyle m \angle F = 63^{\circ }.

Which of the following correctly gives the relationship of the angles of \displaystyle \bigtriangleup ABC ?

Possible Answers:

\displaystyle m \angle C =m \angle B < m \angle A

\displaystyle m \angle C < m \angle B < m \angle A

\displaystyle m \angle C < m \angle B = m \angle A

\displaystyle m \angle B < m \angle C < m \angle A

\displaystyle m \angle B = m \angle C < m \angle A

Correct answer:

\displaystyle m \angle B < m \angle C < m \angle A

Explanation:

\displaystyle m \angle A = 66^{\circ }

Corresponding angles of similar triangles are congruent, so \displaystyle m \angle C =m \angle F = 63^{\circ }.

Consequently, 

\displaystyle m \angle B = 180^{\circ } - (m \angle A +m \angle C)

\displaystyle m \angle B = 180^{\circ } - ( 66^{\circ }+ 63^{\circ })

\displaystyle m \angle B = 180^{\circ } - 129^{\circ } = 51^{\circ }

Therefore,

\displaystyle m \angle B < m \angle C < m \angle A.

Example Question #3 : How To Find If Two Acute / Obtuse Triangles Are Similar

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF\displaystyle AB = 50, BC = DE= 75, DF = 100

Which of the following correctly gives the relationship of the angles of \displaystyle \bigtriangleup ABC

Possible Answers:

\displaystyle m \angle C< m \angle A < m \angle B

\displaystyle m \angle A < m \angle B < m \angle C

\displaystyle m \angle B < m \angle C < m \angle A

\displaystyle m \angle C < m \angle B < m \angle A

\displaystyle m \angle B < m \angle A < m \angle C

Correct answer:

\displaystyle m \angle C < m \angle B < m \angle A

Explanation:

Corresponding sides of similar triangles are in proportion; since \displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF,

\displaystyle \frac{AC}{DF} = \frac{AB}{DE}

\displaystyle \frac{AC}{100} = \frac{50}{75}

\displaystyle \frac{AC}{100} \cdot 100 = \frac{50}{75} \cdot 100

\displaystyle AC = 66\frac{2}{3}

Therefore, \displaystyle AB < AC < BC

The angle opposite the longest (shortest) side of a triangle is the angle of greatest (least) measure, so

\displaystyle m \angle C < m \angle B < m \angle A.

Example Question #141 : Properties Of Triangles

\displaystyle \bigtriangleup ABC \sim \bigtriangleup DEF \sim \bigtriangleup GHI.

\displaystyle AB = DF=HI = 24

\displaystyle AC = 32

\displaystyle GH = 40

Order the triangles by perimeter, least to greatest.

Possible Answers:

\displaystyle \bigtriangleup DEF, \bigtriangleup ABC,\bigtriangleup GHI

\displaystyle \bigtriangleup ABC, \bigtriangleup GHI,\bigtriangleup DEF

\displaystyle \bigtriangleup GHI,\bigtriangleup DEF,\bigtriangleup ABC

\displaystyle \bigtriangleup ABC,\bigtriangleup DEF, \bigtriangleup GHI

\displaystyle \bigtriangleup DEF,\bigtriangleup GHI, \bigtriangleup ABC

Correct answer:

\displaystyle \bigtriangleup DEF, \bigtriangleup ABC,\bigtriangleup GHI

Explanation:

\displaystyle \overline{DF} and \displaystyle \overline{AC} are corresponding sides of their respective triangles, and \displaystyle DF < AC, so it easily follows from proportionality that each side of \displaystyle \bigtriangleup DEF is shorter than its corresponding side in \displaystyle \bigtriangleup ABC. Therefore, \displaystyle \bigtriangleup DEF is of lesser perimeter than \displaystyle \bigtriangleup ABC. By the same reasoning, since \displaystyle AB < GH,  \displaystyle \bigtriangleup ABC is of lesser perimeter than \displaystyle \bigtriangleup GHI.

The correct response is

\displaystyle \bigtriangleup DEF, \bigtriangleup ABC,\bigtriangleup GHI

Learning Tools by Varsity Tutors