SSAT Upper Level Math : Simplifying Fractions

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Simplifying Fractions

Rewrite the mixed fraction \displaystyle 6\frac{12}{15} as an improper fraction in lowest terms, and call \displaystyle N the product of the numerator and the denominator of the simplified improper fraction. How many digits does \displaystyle N have?

Possible Answers:

\displaystyle 5

\displaystyle 6

\displaystyle 2

\displaystyle 4

\displaystyle 3

Correct answer:

\displaystyle 3

Explanation:

\displaystyle \frac{12}{15} = \frac{12 \div 3}{15 \div 3} = \frac{4}{5}, so \displaystyle 6\frac{12}{15} simplifies to \displaystyle 6\frac{4}{5}.

The numerator of the improper form of a mixed fraction is the original numerator added to the product of the integer and the original denominator. The new denominator is the same as the old one. Therefore, 

\displaystyle 6\frac{4}{5} = \frac{6 \times 5 + 4}{5} = \frac{30+4}{5} = \frac{34}{5} 

Multiply the numerator and the denominator: \displaystyle 34 \times 5 = 170,

a three-digit number.

Example Question #2 : Simplifying Fractions

Reduce \displaystyle \frac{16}{60} to lowest terms, call \displaystyle N the sum of the numerator and the denominator. Which statement is true of \displaystyle N?

Possible Answers:

\displaystyle 30 < N \le 35

\displaystyle 20 < N \le 25

\displaystyle 15 < N \le 20

\displaystyle 10 < N \le 15

\displaystyle 25 < N \le 30

Correct answer:

\displaystyle 15 < N \le 20

Explanation:

\displaystyle \frac{16}{60} = \frac{16 \div 4}{60 \div 4} = \frac{4}{15}

Add the numerator and the denominator: \displaystyle 4+15= 19

The correct response is therefore \displaystyle 15 < N \le 20.

Example Question #1 : How To Simplify A Fraction

Consider a fraction \displaystyle \frac{N}{65}, where the numerator is unknown. How many of the following values of \displaystyle N would yield a fraction not in lowest terms?

I) \displaystyle N = 115

II) \displaystyle N = 116

III) \displaystyle N = 117

IV) \displaystyle N = 118

Possible Answers:

\displaystyle \textup{Four}

\displaystyle \textup{None}

\displaystyle \textup{Two}

\displaystyle \textup{One}

\displaystyle \textup{Three}

Correct answer:

\displaystyle \textup{Two}

Explanation:

The prime factorization of \displaystyle 65 is \displaystyle 5 \times 13, so the fraction \displaystyle \frac{N}{65} is reducible if and only if \displaystyle N is a multiple of 5 or 13.

We can immediately tell that 115 is the only multiple of 5, so we test the other numbers to see if there is a multiple of 13. We soon see that

\displaystyle 117 \div 13 = 9, so 116 and 118 cannot be multples of 13.

115 and 117 are the only values of \displaystyle N that yield reducible fractions, so the correct response is two.

Example Question #1 : How To Simplify A Fraction

Reduce the fraction \displaystyle \frac{39}{111} to lowest terms, and call \displaystyle N the product of the numerator and the denominator of the simplified fraction. Give the value of \displaystyle N.

Possible Answers:

\displaystyle 507

\displaystyle \text{The correct answer is not among the other choices.}

\displaystyle 444

\displaystyle 429

\displaystyle 481

Correct answer:

\displaystyle 481

Explanation:

\displaystyle \frac{39 \div 3}{111 \div 3} = \frac{13}{37}

Multiply the numerator and the denominator: \displaystyle 13 \times 37 = 481

The product is a three-digit number.

Example Question #1 : How To Simplify A Fraction

Put the fraction in the simplest form.

\displaystyle \frac{24}{36}

Possible Answers:

\displaystyle \frac{12}{18}

\displaystyle \frac{2}{3}

\displaystyle \frac{4}{6}

\displaystyle \frac{8}{12}

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

To put a fraction in simplest form, keep dividing the numerator and denominator by the same number until you cannot go any further.

\displaystyle \frac{24\div2}{36\div2}=\frac{12}{18}

\displaystyle \frac{12\div2}{18\div2}=\frac{6}{9}

\displaystyle \frac{6\div3}{9\div3}=\frac{2}{3}

Example Question #2 : How To Simplify A Fraction

Put the fraction in simplest form.

\displaystyle \frac{224}{400}

Possible Answers:

\displaystyle \frac{28}{50}

\displaystyle \frac{56}{100}

\displaystyle \frac{14}{25}

\displaystyle \frac{25}{14}

Correct answer:

\displaystyle \frac{14}{25}

Explanation:

To simplify a fraction, divide both the numerator and the denominator by the same numbers until there is no number that can divide them both without resulting in a remainder.

\displaystyle \frac{224\div4}{400\div4}=\frac{56\div2}{100\div2}=\frac{28\div2}{50\div2}=\frac{14}{25}

Example Question #3 : How To Simplify A Fraction

Put the fraction in simplest form.

\displaystyle \frac{36}{120}

Possible Answers:

\displaystyle \frac{3}{120}

\displaystyle \frac{10}{3}

\displaystyle \frac{6}{20}

\displaystyle \frac{3}{10}

Correct answer:

\displaystyle \frac{3}{10}

Explanation:

To simplify a fraction, divide both the numerator and the denominator by the same numbers until there is no number that can divide them both without resulting in a remainder.

\displaystyle \frac{36 \div 12}{120 \div 12}=\frac{3}{10}

Example Question #291 : Rational Numbers

Put the fraction in simplest form.

\displaystyle \frac{48}{120}

Possible Answers:

\displaystyle \frac{4}{10}

\displaystyle \frac{2}{5}

\displaystyle \frac{24}{60}

\displaystyle \frac{16}{40}

Correct answer:

\displaystyle \frac{2}{5}

Explanation:

To simplify a fraction, divide both the numerator and the denominator by the same numbers until there is no number that can divide them both without resulting in a remainder.

\displaystyle \frac{48\div12}{120\div12}=\frac{4\div2}{10\div2}=\frac{2}{5}

Example Question #292 : Rational Numbers

Put the fraction in simplest form.

\displaystyle \frac{20}{36}

Possible Answers:

\displaystyle \frac{5}{36}

\displaystyle \frac{20}{9}

\displaystyle \frac{10}{18}

\displaystyle \frac{5}{9}

Correct answer:

\displaystyle \frac{5}{9}

Explanation:

To simplify a fraction, divide both the numerator and the denominator by the same numbers until there is no number that can divide them both without resulting in a remainder.

\displaystyle \frac{20\div4}{36\div4}=\frac{5}{9}

Example Question #293 : Rational Numbers

Put the fraction in simplest form.

\displaystyle \frac{24}{100}

Possible Answers:

\displaystyle \frac{6}{100}

\displaystyle \frac{6}{25}

\displaystyle \frac{12}{50}

\displaystyle \frac{24}{25}

Correct answer:

\displaystyle \frac{6}{25}

Explanation:

To simplify a fraction, divide both the numerator and the denominator by the same numbers until there is no number that can divide them both without resulting in a remainder.

\displaystyle \frac{24\div4}{100\div4}=\frac{6}{25}

Learning Tools by Varsity Tutors