SSAT Upper Level Math : x and y Intercept

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #31 : X And Y Intercept

A horizontal parabola on the coordinate plane has \(\displaystyle x\)-intercept \(\displaystyle (6,0)\); one of its \(\displaystyle y\)-intercepts is \(\displaystyle (0, 2)\).

Give its equation.

Possible Answers:

\(\displaystyle x= y^{2}-5 y+ 6\)

Insufficient information is given to determine the equation.

\(\displaystyle x = - y^{2}- y+ 6\)

\(\displaystyle x =2y^{2}-7 y + 6\)

\(\displaystyle x= -2 y^{2}+y + 6\)

Correct answer:

Insufficient information is given to determine the equation.

Explanation:

The equation of a horizontal parabola, in standard form, is

\(\displaystyle x = ay^{2}+ by + c\)

for some real \(\displaystyle a,b,c\)

\(\displaystyle c\) is the \(\displaystyle x\)-coordinate of the \(\displaystyle x\)-intercept, so \(\displaystyle c=6\), and the equation is

\(\displaystyle x = ay^{2}+ by + 6\)

Set \(\displaystyle x=0, y=2\):

\(\displaystyle 0 = a\cdot 2^{2}+ b \cdot 2 + 6\)

\(\displaystyle 0 = 4a+2b + 6\)

However, no other information is given, so the values of \(\displaystyle a\) and \(\displaystyle b\) cannot be determined for certain. The correct response is that insufficient information is given.

Example Question #32 : X And Y Intercept

A vertical parabola on the coordinate plane includes points \(\displaystyle (-2, 23), (1,5),\) and \(\displaystyle (3,13)\)

Give its equation.

Possible Answers:

\(\displaystyle y = 2x^{2}+10x-7\)

\(\displaystyle y = 2x^{2}+4x-1\)

\(\displaystyle y = x^{2}-4x+8\)

\(\displaystyle y = 2x^{2}-4x+7\)

\(\displaystyle y = x^{2}+4x -8\)

Correct answer:

\(\displaystyle y = 2x^{2}-4x+7\)

Explanation:

The standard form of the equation of a vertical parabola is

\(\displaystyle y=ax^{2}+bx+c\)

If the values of \(\displaystyle x\) and \(\displaystyle y\) from each ordered pair are substituted in succession, three equations in three variables are formed:

\(\displaystyle a\cdot (-2)^{2}+b(-2)+c = 23\)

\(\displaystyle 4a-2b+c = 23\)

 

\(\displaystyle a\cdot 1^{2}+b \cdot 1+c = 5\)

\(\displaystyle a+b+c = 5\)

 

\(\displaystyle a\cdot 3^{2}+b \cdot 3+c =13\)

\(\displaystyle 9a+3b+c = 13\)

 

The system

\(\displaystyle 4a-2b+c = 23\)

\(\displaystyle a+b+c = 5\)

\(\displaystyle 9a+3b+c = 13\)

can be solved through the elimination method.

First, multiply the second equation by \(\displaystyle -1\) and add to the third:

\(\displaystyle 9a+3b+c =13\)

\(\displaystyle \underline{ -a-b-c \; \; \; =- 5 }\)

\(\displaystyle 8a+2b\)         \(\displaystyle =8\)

 

Next, multiply the second equation by \(\displaystyle -1\) and add to the first:

\(\displaystyle 4a-2b+c = 23\)

\(\displaystyle \underline{ -a-b-c \; =- 5 }\)

\(\displaystyle 3a-3b\)          \(\displaystyle =18\)

Which can be divided by 3 on both sides to yield

\(\displaystyle a-b = 6\)

 

Now solve the two-by-two system

\(\displaystyle 8a+2b = 8\)

\(\displaystyle a-b = 6\)

by substitution:

\(\displaystyle a = b+ 6\)

\(\displaystyle 8 (b+6)+2b = 8\)

\(\displaystyle 8b+48+2b = 8\)

\(\displaystyle 10b+48 = 8\)

\(\displaystyle 10b= -40\)

\(\displaystyle b= -4\)

Back-solve:

\(\displaystyle a-(-4) = 6\)

\(\displaystyle a+4= 6\)

\(\displaystyle a =2\)

Back-solve again:

\(\displaystyle 2+(-4)+c = 5\)

\(\displaystyle -2+c=5\)

\(\displaystyle c=7\)

The equation of the parabola is therefore 

\(\displaystyle y = 2x^{2}-4x+7\).

Example Question #33 : X And Y Intercept

A vertical parabola on the coordinate plane shares one \(\displaystyle x\)-intercept with the line of the equation \(\displaystyle 2x+4y = 8\), and the other with the line of the equation \(\displaystyle 4x-2y = 12\). It also passes through \(\displaystyle (6, -4)\). Give the equation of the parabola.

Possible Answers:

The correct answer is not among the other responses.

\(\displaystyle y = \frac{3}{2}x^{2}- \frac{21}{2}x+18\)

\(\displaystyle y = -\frac{3}{2}x^{2}+\frac{21}{2}x-18\)

\(\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8\)

\(\displaystyle y = \frac{2}{3}x^{2}-\frac{14}{3}x+8\)

Correct answer:

\(\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8\)

Explanation:

First, find the \(\displaystyle x\)-intercepts—the points of intersection with the \(\displaystyle x\)-axis—of the lines by substituting 0 for \(\displaystyle y\) in both equations.

\(\displaystyle 2x+4y = 8\)

\(\displaystyle 2x+4 (0) = 8\)

\(\displaystyle 2x = 8\)

\(\displaystyle x=4\)

\(\displaystyle (4,0)\) is the \(\displaystyle x\)-intercept of this line. 

\(\displaystyle 4x-2y = 12\)

\(\displaystyle 4x-2 (0)= 12\)

\(\displaystyle 4x= 12\)

\(\displaystyle x= 3\)

\(\displaystyle (3,0)\) is the \(\displaystyle x\)-intercept of this line. 

The parabola has \(\displaystyle x\)-intercepts at \(\displaystyle (3,0)\) and \(\displaystyle (4,0)\), so its equation can be expressed as 

\(\displaystyle y = a(x-3)(x-4)\)

for some real \(\displaystyle a\). To find it, substitute using the coordinates of the third point, setting \(\displaystyle x= 6, y = -4\):

\(\displaystyle -4 = a(6-3)(6-4)\)

\(\displaystyle -4 = a \cdot 3 \cdot 2\)

\(\displaystyle -4 = 6 a\)

\(\displaystyle a = \frac{-4}{6} = -\frac{2}{3}\).

The equation is \(\displaystyle y = -\frac{2}{3}(x-3)(x-4)\), which, in standard form, can be rewritten as:

\(\displaystyle y = -\frac{2}{3}(x^{2}-7x+12)\)

\(\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8\)

Example Question #11 : How To Find The Equation Of A Curve

A horizontal parabola on the coordinate plane includes points \(\displaystyle (-11, -1)\) \(\displaystyle (-1,1)\), and \(\displaystyle (10,2)\)

Give its equation.

Possible Answers:

\(\displaystyle x= -y^{2}-4y+4\)

\(\displaystyle x=2y^{2}-11y+8\)

\(\displaystyle x= y^{2}+2y-4\)

\(\displaystyle x=2y^{2}+5y-8\)

\(\displaystyle x= y^{2}-6y+4\)

Correct answer:

\(\displaystyle x=2y^{2}+5y-8\)

Explanation:

The standard form of the equation of a horizontal parabola is

\(\displaystyle x=ay^{2}+by+ c\)

If the values of \(\displaystyle x\) and \(\displaystyle y\) from each ordered pair are substituted in succession, three equations in three variables are formed:

\(\displaystyle a \cdot (-1)^{2}+b \cdot (-1)+ c = -11\)

\(\displaystyle a -b + c = -11\)

 

\(\displaystyle a \cdot (1)^{2}+b \cdot 1+ c = -1\)

\(\displaystyle a+b + c = -1\)

 

\(\displaystyle a \cdot (2)^{2}+b \cdot 2+ c = 10\)

\(\displaystyle 4a+2b+ c = 10\)

 

The three-by-three linear system

\(\displaystyle a -b + c = -11\)

\(\displaystyle a+b + c = -1\)

\(\displaystyle 4a+2b+ c = 10\)

can be solved by way of the elimination method. 

 

\(\displaystyle b\) can be found first, by multiplying the first equation by \(\displaystyle -1\) and add it to the second:

\(\displaystyle a+b + c = -1\)

\(\displaystyle \underline{-a+b - c = 11}\)

        \(\displaystyle 2b\)         \(\displaystyle =10\)

\(\displaystyle 2b \div 2 = 10 \div 2\)

\(\displaystyle b = 5\)

 

Substitute 5 for \(\displaystyle b\) in the last two equations to form a two-by-two linear system:

\(\displaystyle a+5+ c = -1\)

\(\displaystyle a+5+ c - 5= -1 - 5\)

\(\displaystyle a + c = -6\)

 

\(\displaystyle 4a+2 \cdot 5+ c = 10\)

\(\displaystyle 4a+10+ c = 10\)

\(\displaystyle 4a+10+ c- 10 = 10 - 10\)

\(\displaystyle 4a +c = 0\)

 

The system 

\(\displaystyle a + c = -6\)

\(\displaystyle 4a +c = 0\)

can be solved by way of the substitution method;

\(\displaystyle 4a +c = 0\)

\(\displaystyle 4a +c -4a = 0 -4a\)

\(\displaystyle c = -4a\)

\(\displaystyle a + (-4a) = -6\)

\(\displaystyle -3a = -6\)

\(\displaystyle -3a\div (-3) = -6 \div (-3)\)

\(\displaystyle a = 2\)

 

Substitute 2 for \(\displaystyle a\) in the top equation:

\(\displaystyle 2 + c = -6\)

\(\displaystyle 2 + c - 2= -6 - 2\)

\(\displaystyle c= -8\)

 

The equation is \(\displaystyle x=2y^{2}+5y-8\).

Learning Tools by Varsity Tutors