SSAT Upper Level Math : x and y Intercept

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #511 : Ssat Upper Level Quantitative (Math)

Ellipse 1

Give the equation of the above ellipse.

Possible Answers:

\(\displaystyle \frac{(x-6)^{2}}{4} + \frac{(y-2)^{2}}{8} = 1\)

\(\displaystyle \frac{(x-6)^{2}}{16} + \frac{(y-2)^{2}}{64} = 1\)

\(\displaystyle \frac{(x+6)^{2}}{4} + \frac{(y+2)^{2}}{8} = 1\)

\(\displaystyle \frac{(x+6)^{2}}{64} + \frac{(y+2)^{2}}{256} = 1\)

\(\displaystyle \frac{(x+6)^{2}}{16} + \frac{(y+2)^{2}}{64} = 1\)

Correct answer:

\(\displaystyle \frac{(x-6)^{2}}{16} + \frac{(y-2)^{2}}{64} = 1\)

Explanation:

The equation of the ellipse with center \(\displaystyle (h,k)\), horizontal axis of length \(\displaystyle 2a\), and vertical axis of length \(\displaystyle 2b\) is

\(\displaystyle \frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1\)

The ellipse has center \(\displaystyle (6,2)\), horizontal axis of length 8, and vertical axis of length 16. Therefore,

\(\displaystyle h = 6,k = 2\)\(\displaystyle a = \frac{8}{2} = 4\), and \(\displaystyle b = \frac{16}{2} = 8\).

The equation of the ellipse is

\(\displaystyle \frac{(x-6)^{2}}{4^{2}} + \frac{(y-2)^{2}}{8^{2}} = 1\)

\(\displaystyle \frac{(x-6)^{2}}{16} + \frac{(y-2)^{2}}{64} = 1\)

Example Question #512 : Ssat Upper Level Quantitative (Math)

Ellipse 1

Give the equation of the above ellipse.

Possible Answers:

\(\displaystyle \frac{(x-1)^{2}}{100} + \frac{(y-1)^{2}}{36} = 1\)

\(\displaystyle \frac{(x-1)^{2}}{5} + \frac{(y-1)^{2}}{3} = 1\)

\(\displaystyle \frac{(x+1)^{2}}{100} + \frac{(y+1)^{2}}{36} = 1\)

\(\displaystyle \frac{(x-1)^{2}}{25} + \frac{(y-1)^{2}}{9} = 1\)

\(\displaystyle \frac{(x+1)^{2}}{25} + \frac{(y+1)^{2}}{9} = 1\)

Correct answer:

\(\displaystyle \frac{(x-1)^{2}}{25} + \frac{(y-1)^{2}}{9} = 1\)

Explanation:

The equation of the ellipse with center \(\displaystyle (h,k)\), horizontal axis of length \(\displaystyle 2a\), and vertical axis of length \(\displaystyle 2b\) is

\(\displaystyle \frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1\)

The ellipse has center \(\displaystyle (1,1)\), horizontal axis of length 10, and vertical axis of length 6. Therefore,

\(\displaystyle h = k = 1\)\(\displaystyle a = \frac{10}{2} = 5\), and \(\displaystyle b = \frac{6}{2} = 3\).

The equation of the ellipse is

\(\displaystyle \frac{(x-1)^{2}}{5^{2}} + \frac{(y-1)^{2}}{3^{2}} = 1\)

\(\displaystyle \frac{(x-1)^{2}}{25} + \frac{(y-1)^{2}}{9} = 1\)

Example Question #513 : Ssat Upper Level Quantitative (Math)

Ellipse 1

Give the equation of the above ellipse.

Possible Answers:

\(\displaystyle \frac{(x+3)^{2}}{16} + \frac{(y+5)^{2}}{9} = 1\)

\(\displaystyle \frac{(x-3)^{2}}{8} + \frac{(y-5)^{2}}{6} = 1\)

\(\displaystyle \frac{(x-3)^{2}}{16} + \frac{(y-5)^{2}}{9} = 1\)

\(\displaystyle \frac{(x+3)^{2}}{4} + \frac{(y+5)^{2}}{3} = 1\)

\(\displaystyle \frac{(x-3)^{2}}{4} + \frac{(y-5)^{2}}{3} = 1\)

Correct answer:

\(\displaystyle \frac{(x-3)^{2}}{16} + \frac{(y-5)^{2}}{9} = 1\)

Explanation:

The equation of the ellipse with center \(\displaystyle (h,k)\), horizontal axis of length \(\displaystyle 2a\), and vertical axis of length \(\displaystyle 2b\) is

\(\displaystyle \frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1\)

The ellipse has center \(\displaystyle (3,5)\), horizontal axis of length 8, and vertical axis of length 6. Therefore,

\(\displaystyle h = 3,k = 5\)\(\displaystyle a = \frac{8}{2} = 4\), and \(\displaystyle b = \frac{6}{2} = 3\).

The equation of the ellipse is

\(\displaystyle \frac{(x-3)^{2}}{4^{2}} + \frac{(y-5)^{2}}{3^{2}} = 1\)

\(\displaystyle \frac{(x-3)^{2}}{16} + \frac{(y-5)^{2}}{9} = 1\)

 

Example Question #514 : Ssat Upper Level Quantitative (Math)

The \(\displaystyle y\)-intercept and the only \(\displaystyle x\)-intercept of a vertical parabola on the coordinate plane coincide with the \(\displaystyle y\)-intercept and the \(\displaystyle x\)-intercept of the line of the equation \(\displaystyle 3x+ 5y = 30\). Give the equation of the parabola.

Possible Answers:

\(\displaystyle y=\frac{5}{18}x^{2}- \frac{10}{3}x+10\)

\(\displaystyle y = \frac{3}{50} x^{2}-\frac{6}{5}x+6\)

\(\displaystyle y = \frac{50}{3} x^{2}-\frac{1,000}{3}x+ \frac{5,000}{3}\)

\(\displaystyle y = \frac{18}{5} x^{2}-\frac{216}{5}x+ \frac{648}{5}\)

Insufficient information is given to determine the equation.

Correct answer:

\(\displaystyle y = \frac{3}{50} x^{2}-\frac{6}{5}x+6\)

Explanation:

To find the \(\displaystyle y\)-intercept, that is, the point of intersection with the \(\displaystyle y\)-axis, of the line of equation \(\displaystyle 3x+ 5y = 30\), set \(\displaystyle x=0\) and solve for \(\displaystyle y\):

\(\displaystyle 3 (0)+ 5y = 30\)

\(\displaystyle 5y = 30\)

\(\displaystyle y = 6\)

The \(\displaystyle y\)-intercept is \(\displaystyle (0,6)\).

The \(\displaystyle x\)-intercept can be found by doing the opposite:

\(\displaystyle 3x+ 5 (0) = 30\)

\(\displaystyle 3x = 30\)

\(\displaystyle x=10\)

The \(\displaystyle x\)-intercept is \(\displaystyle (10,0)\).

The parabola has these intercepts as well. Also, since the vertical parabola has only one \(\displaystyle x\)-intercept, that point doubles as its vertex as well. 

The equation of a vertical parabola, in vertex form, is

\(\displaystyle y = a(x-h)^{2}+k\),

where \(\displaystyle (h,k)\) is the vertex. Set \(\displaystyle h = 10,k=0\):

\(\displaystyle y = a(x-10)^{2}+0\)

\(\displaystyle y = a(x-10)^{2}\)

for some real \(\displaystyle a\). To find it, use the \(\displaystyle y\)-intercept, setting \(\displaystyle x=0, y = 6\)

\(\displaystyle 6 = a(0-10)^{2}\)

\(\displaystyle 6 = a( -10)^{2}\)

\(\displaystyle 6 = 100a\)

\(\displaystyle a = \frac{6}{100} = \frac{3}{50}\)

The parabola has equation \(\displaystyle y =\frac{3}{50} (x-10)^{2}\), which is rewritten as

\(\displaystyle y =\frac{3}{50} (x^{2}-20x+100)\)

\(\displaystyle y = \frac{3}{50} x^{2}-\frac{6}{5}x+6\)

Example Question #515 : Ssat Upper Level Quantitative (Math)

An ellipse on the coordinate plane has as its center the point \(\displaystyle (-4, 9)\). It passes through the points \(\displaystyle (-4, 5)\) and \(\displaystyle (11, 9)\). Give its equation.

Possible Answers:

\(\displaystyle \frac{(x+4)^{2}}{900} + \frac{(y-9)^{2}}{64} = 1\)

\(\displaystyle \frac{(x-4)^{2}}{900} + \frac{(y+9)^{2}}{64} = 1\)

\(\displaystyle \frac{(x+4)^{2}}{225} + \frac{(y-9)^{2}}{16} = 1\)

Insufficient information is given to determine the equation.

\(\displaystyle \frac{(x-4)^{2}}{225} + \frac{(y+9)^{2}}{16} = 1\)

Correct answer:

\(\displaystyle \frac{(x+4)^{2}}{225} + \frac{(y-9)^{2}}{16} = 1\)

Explanation:

The equation of the ellipse with center \(\displaystyle (h,k)\), horizontal axis of length \(\displaystyle 2a\), and vertical axis of length \(\displaystyle 2b\) is

\(\displaystyle \frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1\)

The center is \(\displaystyle (-4, 9)\), so \(\displaystyle h = -4\) and \(\displaystyle k = 9\).

To find \(\displaystyle a\), note that one endpoint of the horizontal axis is given by the point with the same \(\displaystyle y\)-coordinate through which it passes, namely, \(\displaystyle (11, 9)\). Half the length of this axis, which is \(\displaystyle a\), is the difference of the \(\displaystyle x\)-coordinates, so \(\displaystyle a = 11- (-4) = 15\). Similarly, to find \(\displaystyle b\), note that one endpoint of the vertical axis is given by the point with the same \(\displaystyle x\)-coordinate through which it passes, namely, \(\displaystyle (-4, 5)\). Half the length of this axis, which is \(\displaystyle b\), is the difference of the \(\displaystyle x\)-coordinates, so \(\displaystyle b = 9 - 5 = 4\).

The equation is 

\(\displaystyle \frac{(x-(-4))^{2}}{15^{2}} + \frac{(y-9)^{2}}{4^{2}} = 1\)

or 

\(\displaystyle \frac{(x+4)^{2}}{225} + \frac{(y-9)^{2}}{16} = 1\).

Example Question #516 : Ssat Upper Level Quantitative (Math)

An ellipse passes through points \(\displaystyle (4, 6) , (10,6), (7, 2), (7, 10)\)

Give its equation.

Possible Answers:

\(\displaystyle \frac{(x-6)^{2}}{16} + \frac{(y-7)^{2}} {9}= 1\)

\(\displaystyle \frac{(x +7)^{2}}{16} + \frac{(y+6)^{2}}{9}= 1\)

\(\displaystyle \frac{(x-7)^{2}}{9} + \frac{(y-6)^{2}}{16} = 1\)

\(\displaystyle \frac{(x +7)^{2}}{9} + \frac{(y+6)^{2}}{16} = 1\)

\(\displaystyle \frac{(x-6)^{2}}{9} + \frac{(y-7)^{2}}{16} = 1\)

Correct answer:

\(\displaystyle \frac{(x-7)^{2}}{9} + \frac{(y-6)^{2}}{16} = 1\)

Explanation:

The equation of the ellipse with center \(\displaystyle (h,k)\), horizontal axis of length \(\displaystyle 2a\), and vertical axis of length \(\displaystyle 2b\) is

\(\displaystyle \frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1\)

\(\displaystyle (4, 6)\) and \(\displaystyle (10,6)\) are the endpoints of a horizontal line segment with midpoint

\(\displaystyle \left ( \frac{4+10}{2}, \frac{6+6}{2} \right )\), or \(\displaystyle (7,6)\)

and length \(\displaystyle 10-4= 6\).

\(\displaystyle (7, 2)\) and \(\displaystyle (7, 10)\) are the endpoints of a vertical line segment with midpoint

\(\displaystyle \left ( \frac{7+7}{2}, \frac{2+10}{2} \right )\), or \(\displaystyle (7,6)\)

and length \(\displaystyle 10-2 = 8\)

Because their midpoints coincide, these are the endpoints of the horizontal axis and vertical axis, respectively, of the ellipse, and the common midpoint \(\displaystyle (7,6)\) is the center.

Therefore, 

\(\displaystyle h = 7\) and \(\displaystyle k = 6\);

\(\displaystyle 2a = 6\) and \(\displaystyle 2b= 8\); consequently \(\displaystyle a = 3\) and \(\displaystyle b = 4\).

The equation of the ellipse is 

\(\displaystyle \frac{(x-7)^{2}}{3^{2}} + \frac{(y-6)^{2}}{4^{2}} = 1\), or

\(\displaystyle \frac{(x-7)^{2}}{9} + \frac{(y-6)^{2}}{16} = 1\)

 

Example Question #517 : Ssat Upper Level Quantitative (Math)

A horizontal parabola on the coordinate plane  \(\displaystyle (0,4)\) as its only \(\displaystyle y\)-intercept; its \(\displaystyle x\)-intercept is \(\displaystyle (6,0)\).

Give its equation.

Possible Answers:

\(\displaystyle x = \frac{3}{8} y^{2}-3y+6\)

Insufficient information is given to determine the equation.

\(\displaystyle x =- \frac{1}{9} y^{2}+4\)

\(\displaystyle x = \frac{1}{9} y^{2}-\frac{4}{3}y+4\)

\(\displaystyle x = \frac{8}{3}y^{2}-\frac{64}{3}y+\frac{128}{3}\)

Correct answer:

\(\displaystyle x = \frac{3}{8} y^{2}-3y+6\)

Explanation:

If a horizontal parabola has only one \(\displaystyle y\)-intercept, which here is \(\displaystyle (0,4)\), that point doubles as its vertex as well. 

The equation of a horizontal parabola, in vertex form, is

\(\displaystyle x = a(y-k)^{2}+h\),

where \(\displaystyle (h,k)\) is the vertex. Set \(\displaystyle h = 0,k=4\):

\(\displaystyle x = a(y-4)^{2}+0\)

\(\displaystyle x = a(y-4)^{2}\)

To find \(\displaystyle a\), use the \(\displaystyle x\)-intercept, setting \(\displaystyle x= 6, y=0\):

\(\displaystyle 6 = a(0-4)^{2}\)

\(\displaystyle 6 = a( -4)^{2}\)

\(\displaystyle 6 = 16a\)

\(\displaystyle a = \frac{6}{16} = \frac{3}{8}\)

The equation, in vertex form, is \(\displaystyle x = \frac{3}{8}(y-4)^{2}\). In standard form:

\(\displaystyle x = \frac{3}{8}(y^{2}-8y+16)\)

\(\displaystyle x = \frac{3}{8} y^{2}-3y+6\)

 

Example Question #518 : Ssat Upper Level Quantitative (Math)

A horizontal parabola on the coordinate plane has vertex \(\displaystyle (-3, -6)\); one of its \(\displaystyle y\)-intercepts is \(\displaystyle (0, 4)\).

Give its equation.

Possible Answers:

\(\displaystyle x = \frac{9}{10} y^{2}+ \frac{27}{5} y+ \frac{81}{10}\)

\(\displaystyle x = \frac{7}{36} y^{2}+ \frac{7}{3} y+7\)

\(\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}\)

Insufficient information is given to determine the equation.

\(\displaystyle x = \frac{6}{49} y^{2}+\frac{36}{49} y-\frac{240}{49}\)

Correct answer:

\(\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}\)

Explanation:

The equation of a horizontal parabola, in vertex form, is

\(\displaystyle x = a(y-k)^{2}+h\),

where \(\displaystyle (h,k)\) is the vertex. Set \(\displaystyle h = -3,k=-6\):

\(\displaystyle x = a[y-(-6)]^{2}+ (-3)\)

\(\displaystyle x = a(y+6)^{2}-3\)

To find \(\displaystyle a\), use the known \(\displaystyle y\)-intercept, setting \(\displaystyle x =0, y=4\):

\(\displaystyle 0 = a(4+6)^{2}-3\)

\(\displaystyle 0 = a\cdot 10^{2}-3\)

\(\displaystyle 0 =100 a-3\)

\(\displaystyle 100a= 3\)

\(\displaystyle a = \frac{3}{100}\)

The equation, in vertex form, is \(\displaystyle x = \frac{3}{100}(y+6)^{2}-3\); in standard form:

\(\displaystyle x = \frac{3}{100}(y^{2}+12+36)-3\)

\(\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y+\frac{27}{25} - \frac{75}{25}\)

\(\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}\)

Example Question #519 : Ssat Upper Level Quantitative (Math)

A vertical parabola on the coordinate plane has \(\displaystyle y\)-intercepts \(\displaystyle (0,2)\) and \(\displaystyle (0,6)\), and passes through \(\displaystyle (3, -2)\).

Give its equation.

Possible Answers:

\(\displaystyle x =- \frac{2}{3}y^{2}+ \frac{16}{3}y-8\)

\(\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}\)

\(\displaystyle x = \frac{2}{3}y^{2}- \frac{16}{3}y+8\)

\(\displaystyle x = -\frac{3}{32} y^{2}+ \frac{3}{4} y- \frac{9}{8}\)

Insufficient information is given to determine the equation.

Correct answer:

\(\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}\)

Explanation:

A horizontal parabola which passes through  \(\displaystyle (0,2)\) and \(\displaystyle (0,6)\) has as its equation

\(\displaystyle x = a(y-2)(y-6)\).

To find \(\displaystyle a\), substitute the coordinates of the third point, setting \(\displaystyle x=3,y=-2\):

\(\displaystyle 3= a(-2-2)(-2-6)\)

\(\displaystyle 3= a(-4)(-8)\)

\(\displaystyle 3= 32a\)

\(\displaystyle a = \frac{3}{32}\)

The equation is therefore \(\displaystyle x = \frac{3}{32}(y-2)(y-6)\), which is, in standard form:

\(\displaystyle x = \frac{3}{32}(y^{2}-8y+12)\)

\(\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}\)

Example Question #520 : Ssat Upper Level Quantitative (Math)

A vertical parabola on the coordinate plane has \(\displaystyle x\)-intercepts \(\displaystyle (2,0)\) and \(\displaystyle (6,0)\), and passes through \(\displaystyle (3, -2)\).

Give its equation.

Possible Answers:

\(\displaystyle y = - \frac{3}{2}x^{2}+12x-18\)

\(\displaystyle y = \frac{3}{2}x^{2}-12x+18\)

\(\displaystyle y =- \frac{2}{3}x^{2}+\frac{16}{3}x-8\)

\(\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8\)

\(\displaystyle y = x^{2}-8x+12\)

Correct answer:

\(\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8\)

Explanation:

A vertical parabola which passes through \(\displaystyle (2,0)\) and \(\displaystyle (6,0)\) has as its equation

\(\displaystyle y = a(x-2)(x-6)\)

To find \(\displaystyle a\), substitute the coordinates of the third point, setting \(\displaystyle x=3,y=-2\):

\(\displaystyle -2 = a(3-2)(3-6)\)

\(\displaystyle -2 = a \cdot 1 \cdot (-3)\)

\(\displaystyle -2 = -3a\)

\(\displaystyle a = \frac{-2}{-3}= \frac{2}{3}\)

The equation is \(\displaystyle y = \frac{2}{3}(x-2)(x-6)\); expand to put it in standard form:

\(\displaystyle y = \frac{2}{3}(x^{2}-8x+12)\)

\(\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8\)

Learning Tools by Varsity Tutors