SSAT Upper Level Math : Area of Polygons

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find The Area Of A Hexagon

Find the area of a regular hexagon that has side lengths of \(\displaystyle 6\).

Possible Answers:

\(\displaystyle 48\sqrt3\)

\(\displaystyle 36\sqrt3\)

\(\displaystyle 54\sqrt3\)

\(\displaystyle 36\)

Correct answer:

\(\displaystyle 54\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times6^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 36\)

\(\displaystyle \text{Area}=\frac{108\sqrt3}{2}=54\sqrt3\)

 

Example Question #2 : How To Find The Area Of A Hexagon

Find the area of a regular hexagon that has a side length of \(\displaystyle 8\).

Possible Answers:

\(\displaystyle 96\sqrt3\)

\(\displaystyle 192\)

\(\displaystyle 192\sqrt3\)

\(\displaystyle 48\sqrt3\)

Correct answer:

\(\displaystyle 96\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 8^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 64\)

\(\displaystyle \text{Area}=\frac{192\sqrt3}{2}=96\sqrt3\)

 

Example Question #3 : How To Find The Area Of A Hexagon

Find the area of a regular hexagon that has a side length of \(\displaystyle 12\).

Possible Answers:

\(\displaystyle 432\)

\(\displaystyle 432\sqrt3\)

\(\displaystyle 216\sqrt3\)

\(\displaystyle 108\sqrt3\)

Correct answer:

\(\displaystyle 216\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 12^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 144\)

\(\displaystyle \text{Area}=\frac{432\sqrt3}{2}=216\sqrt3\)

 

Example Question #4 : How To Find The Area Of A Hexagon

Find the area of a regular hexagon that has side lengths of \(\displaystyle 7\).

Possible Answers:

\(\displaystyle \frac{147}{2}\sqrt3\)

\(\displaystyle 147\sqrt3\)

\(\displaystyle 49\sqrt3\)

\(\displaystyle 147\)

Correct answer:

\(\displaystyle \frac{147}{2}\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 7^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 49\)

\(\displaystyle \text{Area}=\frac{147}{2}\sqrt3\)

 

Example Question #11 : Areas And Perimeters Of Polygons

Find the area of a regular hexagon that has side lengths of \(\displaystyle 10\).

Possible Answers:

\(\displaystyle 150\sqrt3\)

\(\displaystyle 300\sqrt3\)

\(\displaystyle 50\sqrt3\)

\(\displaystyle 250\sqrt3\)

Correct answer:

\(\displaystyle 150\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 10^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 100\)

\(\displaystyle \text{Area}=\frac{300\sqrt3}{2}=150\sqrt3\)

 

Example Question #12 : Areas And Perimeters Of Polygons

Find the area of a regular hexagon with side lengths \(\displaystyle 20\).

Possible Answers:

\(\displaystyle 200\sqrt3\)

\(\displaystyle 600\sqrt3\)

\(\displaystyle 450\sqrt3\)

\(\displaystyle 1200\sqrt3\)

Correct answer:

\(\displaystyle 600\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 20^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 400\)

\(\displaystyle \text{Area}=\frac{1200\sqrt3}{2}=600\sqrt3\)

 

Example Question #13 : Areas And Perimeters Of Polygons

Find the area of a regular hexagon that has side lengths of \(\displaystyle x\).

Possible Answers:

\(\displaystyle \frac{x^2}{2}\sqrt3\)

\(\displaystyle \frac{3x^2}{2}\sqrt3\)

\(\displaystyle x^2\sqrt3\)

\(\displaystyle 3x^2\sqrt3\)

Correct answer:

\(\displaystyle \frac{3x^2}{2}\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times x^2\)

 

\(\displaystyle \text{Area}=\frac{3x^2}{2}\sqrt3\)

 

Example Question #14 : Areas And Perimeters Of Polygons

Find the area of a regular hexagon with side lengths of \(\displaystyle 2t\).

Possible Answers:

\(\displaystyle 8t^2\sqrt3\)

\(\displaystyle 12t^2\sqrt3\)

\(\displaystyle 6t^2\sqrt3\)

\(\displaystyle 15t^2\sqrt3\)

Correct answer:

\(\displaystyle 6t^2\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times (2t)^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 4t^2\)

\(\displaystyle \text{Area}=\frac{12t^2\sqrt3}{2}=6t^2\sqrt3\)

 

Example Question #751 : Geometry

Find the area of a regular hexagon with side lengths of \(\displaystyle 3m\).

Possible Answers:

\(\displaystyle 27m^2\sqrt3\)

\(\displaystyle \frac{27m^2}{2}\sqrt2\)

\(\displaystyle \frac{27m^2}{2}\sqrt3\)

\(\displaystyle 9m^2\sqrt3\)

Correct answer:

\(\displaystyle \frac{27m^2}{2}\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times (3m)^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 9m^2\)

\(\displaystyle \text{Area}=\frac{27m^2}{2}\sqrt3\)

 

Example Question #5 : How To Find The Area Of A Hexagon

Find the area of a regular hexagon with side lengths of \(\displaystyle 8n\).

Possible Answers:

\(\displaystyle 96n^2\sqrt3\)

\(\displaystyle 96n\sqrt3\)

\(\displaystyle 192n^2\sqrt3\)

\(\displaystyle 288n^2\sqrt3\)

Correct answer:

\(\displaystyle 96n^2\sqrt3\)

Explanation:

Use the following formula to find the area of a regular hexagon:

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times \text{side}^2\).

Now, substitute in the length of the side into this equation.

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times (8n)^2\)

\(\displaystyle \text{Area}=\frac{3\sqrt3}{2}\times 64n^2\)

\(\displaystyle \text{Area}=\frac{192n^2\sqrt3}{2}=96n^2\sqrt3\)

 

Learning Tools by Varsity Tutors