SSAT Middle Level Math : Fractions

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #13 : How To Find The Decimal Equivalent Of A Fraction

Express \(\displaystyle 0.44\) as a fraction in simplest form.

Possible Answers:

\(\displaystyle \frac{22}{45}\)

\(\displaystyle \frac{11}{20}\)

\(\displaystyle \frac{11}{25}\)

\(\displaystyle \frac{22}{50}\)

\(\displaystyle \frac{11}{24}\)

Correct answer:

\(\displaystyle \frac{11}{25}\)

Explanation:

\(\displaystyle 0.44\) is forty-four one-hundredths, so write this as a fraction and reduce:

\(\displaystyle \frac{44}{100} = \frac{44\div 4}{100\div 4} = \frac{11}{25}\)

Example Question #842 : Fractions

Write as a decimal: \(\displaystyle \frac{23}{30}\)

Possible Answers:

\(\displaystyle 0.7\overline{6}\)

\(\displaystyle 0.69\)

\(\displaystyle 0.\overline{7}\)

\(\displaystyle 0.766\)

\(\displaystyle 0.76\overline{7}\)

Correct answer:

\(\displaystyle 0.7\overline{6}\)

Explanation:

Divide \(\displaystyle 23\) by \(\displaystyle 30\):

\(\displaystyle 23 \div 30 = 0.7666...\)

The 6 repeats infinitely, so this can be written as \(\displaystyle 0.7\overline{6}\)

Example Question #1 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{57}{100}\)?

 

Possible Answers:

\(\displaystyle .57\)

\(\displaystyle 5.7\)

\(\displaystyle .057\)

\(\displaystyle 57.00\)

\(\displaystyle 50.7\)

Correct answer:

\(\displaystyle .57\)

Explanation:

\(\displaystyle \frac{57}{100}\) is fifty-seven hundredths. 

\(\displaystyle .57\) is fifty-seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #1 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{69}{100}\)?

 

Possible Answers:

\(\displaystyle 60.9\)

\(\displaystyle 69.09\)

\(\displaystyle 69.9\)

\(\displaystyle 6.9\)

\(\displaystyle .69\)

Correct answer:

\(\displaystyle .69\)

Explanation:

\(\displaystyle \frac{69}{100}\) is sixty-nine hundredths. 

\(\displaystyle .69\) is sixty-nine hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #21 : How To Find The Decimal Equivalent Of A Fraction

What decimal is equivalent to \(\displaystyle \frac{75}{100}\)

 

Possible Answers:

\(\displaystyle 70.5\)

\(\displaystyle 7.5\)

\(\displaystyle 75.05\)

\(\displaystyle 75.01\)

\(\displaystyle .75\)

Correct answer:

\(\displaystyle .75\)

Explanation:

\(\displaystyle \frac{75}{100}\) is seventy-five hundredths. 

\(\displaystyle .75\) is seventy-five hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #22 : How To Find The Decimal Equivalent Of A Fraction

What decimal is equivalent to \(\displaystyle \frac{92}{100}\)

 

Possible Answers:

\(\displaystyle 90.02\)

\(\displaystyle 9.02\)

\(\displaystyle 9.2\)

\(\displaystyle 90.2\)

\(\displaystyle .92\)

Correct answer:

\(\displaystyle .92\)

Explanation:

\(\displaystyle \frac{92}{100}\) is ninety-two hundredths. 

\(\displaystyle .92\) is ninety-two hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #2 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{18}{100}\)?

 

Possible Answers:

\(\displaystyle 10.8\)

\(\displaystyle 1.8\)

\(\displaystyle .018\)

\(\displaystyle 10.08\)

\(\displaystyle .18\)

Correct answer:

\(\displaystyle .18\)

Explanation:

\(\displaystyle \frac{18}{100}\) is eighteen hundredths. 

\(\displaystyle .18\) is eighteen hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #3 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

What decimal is equivalent to \(\displaystyle \frac{7}{100}\)?

 

Possible Answers:

\(\displaystyle .07\)

\(\displaystyle 7.07\)

\(\displaystyle 77.7\)

\(\displaystyle 7.7\)

\(\displaystyle .7\)

Correct answer:

\(\displaystyle .07\)

Explanation:

\(\displaystyle \frac{7}{100}\) is seven hundredths. 

\(\displaystyle .07\) is seven hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #23 : How To Find The Decimal Equivalent Of A Fraction

Select the decimal that is equivalent to \(\displaystyle \frac{81}{100}\)

 

Possible Answers:

\(\displaystyle 8.1\)

\(\displaystyle 80.1\)

\(\displaystyle 81.00\)

\(\displaystyle 81.01\)

\(\displaystyle .81\)

Correct answer:

\(\displaystyle .81\)

Explanation:

\(\displaystyle \frac{81}{100}\) is eighty-one hundredths. 

\(\displaystyle .81\) is eighty-one hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Example Question #5 : Use Decimal Notation For Fractions With Denominators 10 Or 100: Ccss.Math.Content.4.Nf.C.6

Select the decimal that is equivalent to \(\displaystyle \frac{12}{100}\)

 

Possible Answers:

\(\displaystyle .012\)

\(\displaystyle 10.2\)

\(\displaystyle 12.12\)

\(\displaystyle 1.2\)

\(\displaystyle .12\)

Correct answer:

\(\displaystyle .12\)

Explanation:

\(\displaystyle \frac{12}{100}\) is twelve hundredths. 

\(\displaystyle .12\) is twelve hundredths. When we say a decimal, we say the number and add the place-value of the last digit. 

Learning Tools by Varsity Tutors