SSAT Middle Level Math : How to divide fractions

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #571 : Numbers And Operations

How many \(\displaystyle \frac{1}{7}\ cup\) servings are in \(\displaystyle 9\) cups of sugar? 

 

Possible Answers:

\(\displaystyle 63\)

\(\displaystyle 72\)

\(\displaystyle 64\)

\(\displaystyle 75\)

\(\displaystyle 81\)

Correct answer:

\(\displaystyle 63\)

Explanation:

Because we want to know how many \(\displaystyle \frac{1}{7}\ cup\) servings are in \(\displaystyle 9\) cups, we are dividing \(\displaystyle 9\) by \(\displaystyle \frac{1}{7}\)

Remember, whenever we divide by a fraction, we multiply by the reciprocal

\(\displaystyle \frac{9}{1}\times\frac{7}{1}=\frac{63}{1}=63\)

Example Question #2 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Sally has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 13\) bags. How much will each bag of gummy candies weigh? 

 

 

 

Possible Answers:

\(\displaystyle \frac{1}{26}lb\)

\(\displaystyle \frac{13}{2}lb\)

\(\displaystyle \frac{1}{13}lb\)

\(\displaystyle \frac{1}{3}lb\)

\(\displaystyle \frac{1}{9}lb\)

Correct answer:

\(\displaystyle \frac{1}{26}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 13\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 13\)

To solve \(\displaystyle \frac{1}{2}\div13\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{13}=\frac{1}{26}\)

1 26

Example Question #91 : How To Divide Fractions

Jessie has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 2\) bags. How much will each bag of gummy candies weigh? 

 

 

 

Possible Answers:

\(\displaystyle \frac{1}{4}lb\)

\(\displaystyle \frac{2}{1}lb\)

\(\displaystyle \frac{1}{8}lb\)

\(\displaystyle \frac{1}{3}lb\)

\(\displaystyle \frac{4}{2}lb\)

Correct answer:

\(\displaystyle \frac{1}{4}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 2\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 2\)

To solve \(\displaystyle \frac{1}{2}\div2\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{2}=\frac{1}{4}\)

1 4

Example Question #4 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Jessie has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 12\) bags. How much will each bag of gummy candies weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{12}lb\)

\(\displaystyle \frac{2}{12}lb\)

\(\displaystyle \frac{1}{9}lb\)

\(\displaystyle \frac{1}{24}lb\)

\(\displaystyle \frac{12}{2}lb\)

Correct answer:

\(\displaystyle \frac{1}{24}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 12\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 12\)

To solve \(\displaystyle \frac{1}{2}\div12\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{12}=\frac{1}{24}\)

 

1 24 

Example Question #92 : How To Divide Fractions

Erica has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 11\) bags. How much will each bag of gummy candies weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{12}lb\)

\(\displaystyle \frac{1}{11}lb\)

\(\displaystyle \frac{11}{}2lb\)

\(\displaystyle \frac{1}{9}lb\)

\(\displaystyle \frac{1}{22}lb\)

Correct answer:

\(\displaystyle \frac{1}{22}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 11\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 11\)

To solve \(\displaystyle \frac{1}{2}\div11\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{11}=\frac{1}{22}\)

 1 22

Example Question #6 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Sally has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 10\) bags. How much will each bag of gummy candies weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{10}{2}lb\)

\(\displaystyle \frac{1}{10}lb\)

\(\displaystyle \frac{1}{20}lb\)

\(\displaystyle \frac{1}{4}lb\)

\(\displaystyle \frac{2}{10}lb\)

Correct answer:

\(\displaystyle \frac{1}{20}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 10\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 10\)

To solve \(\displaystyle \frac{1}{2}\div10\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{10}=\frac{1}{20}\)

 1 20

Example Question #7 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Melissa has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 9\) bags. How much will each bag of gummy candies weigh? 

 

 

 

Possible Answers:

\(\displaystyle \frac{1}{12}lb\)

\(\displaystyle \frac{9}{8}lb\)

\(\displaystyle \frac{1}{18}lb\)

\(\displaystyle \frac{1}{9}lb\)

\(\displaystyle \frac{18}{2}lb\)

Correct answer:

\(\displaystyle \frac{1}{18}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 9\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 9\)

To solve \(\displaystyle \frac{1}{2}\div9\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{9}=\frac{1}{18}\)


1 18

Example Question #8 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Melissa has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 8\) bags. How much will each bag of gummy candies weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{7}lb\)

\(\displaystyle \frac{1}{9}lb\)

\(\displaystyle \frac{1}{16}lb\)

\(\displaystyle \frac{16}{2}lb\)

\(\displaystyle \frac{1}{6}lb\)

Correct answer:

\(\displaystyle \frac{1}{16}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 8\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 8\)

To solve \(\displaystyle \frac{1}{2}\div8\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{8}=\frac{1}{16}\)

 1 16

Example Question #10 : Interpret Division Of A Unit Fraction By A Whole Number : Ccss.Math.Content.5.Nf.B.7a

Melissa has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 6\) bags. How much will each bag of gummy candies weigh? 

 

 

 

Possible Answers:

\(\displaystyle \frac{6}{2}lb\)

\(\displaystyle \frac{1}{3}lb\)

\(\displaystyle \frac{1}{12}lb\)

\(\displaystyle \frac{1}{6}lb\)

\(\displaystyle \frac{4}{3}lb\)

Correct answer:

\(\displaystyle \frac{1}{12}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 6\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 6\)

To solve \(\displaystyle \frac{1}{2}\div6\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{6}=\frac{1}{12}\)

1 12

Example Question #91 : How To Divide Fractions

Erica has \(\displaystyle \frac{1}{2}lb\) of gummy candies that she wants to divide evenly into \(\displaystyle 5\) bags. How much will each bag of gummy candies weigh? 

 

 

Possible Answers:

\(\displaystyle \frac{1}{10}lb\)

\(\displaystyle \frac{5}{2}lb\)

\(\displaystyle \frac{1}{7}lb\)

\(\displaystyle \frac{4}{3}lb\)

\(\displaystyle \frac{1}{5}lb\)

Correct answer:

\(\displaystyle \frac{1}{10}lb\)

Explanation:

We are splitting \(\displaystyle \frac{1}{2}\) into \(\displaystyle 5\) equal groups, so we are dividing \(\displaystyle \frac{1}{2}\) by \(\displaystyle 5\)

To solve \(\displaystyle \frac{1}{2}\div5\) we multiply by the reciprocal. 

\(\displaystyle \frac{1}{2}\times\frac{1}{5}=\frac{1}{10}\)

 

1 10

Learning Tools by Varsity Tutors