SSAT Middle Level Math : Geometry

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #223 : Ssat Middle Level Quantitative (Math)

Dr. Robinson recently put a rectangular fence around his backyard. The fence has a width of \displaystyle \small 15 yards and a length of \displaystyle \small 8 yards. If Dr. Robinson paid \displaystyle \small \small \$ 12.50 for every yard of fence, how much did the fence cost? 

Possible Answers:

\displaystyle \small \$525

\displaystyle \small \$575

\displaystyle \small \$625

\displaystyle \small \$375

Correct answer:

\displaystyle \small \$575

Explanation:

To find the cost of the fence, apply the formula \displaystyle \small P=2(width)+2(length) in order to first find the length of the perimeter of the fence.

Then multiply the perimeter by \displaystyle \small \$12.50.

Thus, the solution is:

\displaystyle \small P=2(15)+2(8)
\displaystyle \small P=30+16
\displaystyle \small P=46

\displaystyle \small 46\times12.5=575 

Example Question #224 : Ssat Middle Level Quantitative (Math)

Custom_vt_xy_gif_file_13abcd

The rectangle shown above has a width of \displaystyle \small 14 and a length of \displaystyle \small 4. Find the area and perimeter of the rectangle. 

Possible Answers:

\displaystyle \small \small A=56 units^2, P=36

\displaystyle \small \small A=50 units^2, P=34

\displaystyle \small \small A=43 units^2, P=26

\displaystyle \small \small A=36 units^2, P=36

Correct answer:

\displaystyle \small \small A=56 units^2, P=36

Explanation:

To solve this problem apply the formulas: \displaystyle \small Area=width\times length & \displaystyle \small Perimeter=2(w)+2(l)

Thus, the solution is:

\displaystyle \small A=14\times4=56
\displaystyle \small P=2(14)+2(4)=28+8=36

Example Question #1 : How To Find The Area Of A Triangle

A right triangle has legs 90 centimeters and 16 centimeters, What is its area?

Possible Answers:

\displaystyle 720 \; \textrm{cm}^{2}

\displaystyle 4,050 \; \textrm{cm}^{2}

\displaystyle 405\; \textrm{cm}^{2}

\displaystyle 256 \; \textrm{cm}^{2}

\displaystyle 1,440 \; \textrm{cm}^{2}

Correct answer:

\displaystyle 720 \; \textrm{cm}^{2}

Explanation:

The legs of a right triangle are its base and height, so use the area formula for a triangle with these dimension. Setting \displaystyle b=16,h=90:

\displaystyle A = \frac{1}{2} bh = \frac{1}{2} \cdot 16 \cdot 90= 720

Example Question #2 : Plane Geometry

A triangle has base 18 inches and height 14 inches. What is its area?

Possible Answers:

\displaystyle 126 \; \textrm{in}^{2}

\displaystyle 252 \; \textrm{in}^{2}

\displaystyle 162 \; \textrm{in}^{2}

\displaystyle 196 \; \textrm{in}^{2}

\displaystyle 98 \; \textrm{in}^{2}

Correct answer:

\displaystyle 126 \; \textrm{in}^{2}

Explanation:

Use the area formula for a triangle, setting \displaystyle b=18,h=14:

\displaystyle A = \frac{1}{2} bh = \frac{1}{2} \cdot 18 \cdot14 = 126

Example Question #3 : Plane Geometry

Triangle

What is the area of the above triangle?

Possible Answers:

\displaystyle 300\textrm{ in}^{2}

\displaystyle 112\textrm{ in}^{2}

\displaystyle 56\textrm{ in}^{2}

\displaystyle 84\textrm{ in}^{2}

\displaystyle 168\textrm{ in}^{2}

Correct answer:

\displaystyle 84\textrm{ in}^{2}

Explanation:

The two legs of a right triangle can serve as its base and its height. The area of the triangle is half the product of the two:

\displaystyle \frac{1}{2} \cdot 7 \cdot 24 = 84

That is, the area is 84 square inches.

Example Question #4 : Plane Geometry

Triangle

 

What is the area of the above triangle?

Possible Answers:

\displaystyle 3,000\textrm{ mm}^{2}

\displaystyle 325\textrm{ mm}^{2}

\displaystyle 300\textrm{ mm}^{2}

\displaystyle 3,250\textrm{ mm}^{2}

\displaystyle 6,000\textrm{ mm}^{2}

Correct answer:

\displaystyle 3,000\textrm{ mm}^{2}

Explanation:

The two legs of a right triangle can serve as its base and its height. The area of the triangle is half the product of the two:

\displaystyle \frac{1}{2} \cdot 50 \cdot 120 = 3,000

That is, the area is 3,000 square millimeters.

Example Question #1 : How To Find The Area Of A Triangle

Triangle

Note: Figure NOT drawn to scale.

The above triangle has an area of 450 square centimers. \displaystyle x = 20 \textrm{ cm}. What is \displaystyle y ?

Possible Answers:

\displaystyle y = 37.5\textrm{ cm}

\displaystyle y = 45\textrm{ cm}

\displaystyle y = 60\textrm{ cm}

\displaystyle y = 22.5 \textrm{ cm}

\displaystyle y = 30\textrm{ cm}

Correct answer:

\displaystyle y = 45\textrm{ cm}

Explanation:

The area of a triangle is one half the product of its base and its height - in the above diagram, that means

\displaystyle A = \frac{1}{2}xy.

Substitute \displaystyle A = 450, x = 20, and solve for \displaystyle y :

\displaystyle \frac{1}{2} \cdot 20 \cdot y = 450

\displaystyle 10 \cdot y = 450

\displaystyle 10 \cdot y \div 10 = 450 \div 10

\displaystyle y = 45 \textrm{ cm}

Example Question #3 : How To Find The Area Of A Triangle

Q7

Find the area of the triangle.

Note: Figure not drawn to scale.

Possible Answers:

\displaystyle 60\: in^{2}

\displaystyle 120\: in^{2}

\displaystyle 24\: in^{2}

\displaystyle 48\: in^{2}

Correct answer:

\displaystyle 60\: in^{2}

Explanation:

To find the area of a triangle, multiply the base of the triangle by the height and then divide by two.

\displaystyle 10*12=120 

\displaystyle 120/2=60

 

Example Question #2 : How To Find The Area Of A Triangle

Square

The quadrilateral in the above diagram is a square. What percent of it is white?

Possible Answers:

\displaystyle 20 \%

\displaystyle 14 \frac{1}{16} \%

\displaystyle 17 \frac{1}{2} \%

\displaystyle 28 \frac{1}{8} \%

\displaystyle 16 \frac{1}{4} \%

Correct answer:

\displaystyle 14 \frac{1}{16} \%

Explanation:

The area of the entire square is the square of the length of a side, or

\displaystyle 80 \times 80 = 6,400.

The area of the white right triangle is half the product of its legs, or

\displaystyle \frac{1}{2} \times 30 \times 60 = 900.

Therefore, the area of that triangle is 

\displaystyle \frac{900 }{6,400} \times 100 = 14 \frac{1}{16} \%

of that of the entire square.

Example Question #2 : How To Find The Area Of A Triangle

Yard_2

Mr. Jones owns the isosceles-triangle-shaped parcel of land seen in the above diagram. He sells the parcel represented in red to his brother. What is the area of the land he retains?

Possible Answers:

\displaystyle 7,616\textrm{ m}^{2}

\displaystyle 18,816\textrm{ m}^{2}

\displaystyle 15,232\textrm{ m}^{2}

\displaystyle 4,032\textrm{ m}^{2}

\displaystyle 11,200\textrm{ m}^{2}

Correct answer:

\displaystyle 7,616\textrm{ m}^{2}

Explanation:

The area of a triangle is half the product of its base and its height, so Mr. Jones's parcel originally had area 

\displaystyle \frac{1}{2} \times 140 \times 160 = 11,200 square meters.

The portion he sold his brother, represented by the red right triangle, has area

\displaystyle \frac{1}{2} \times 56 \times 128 = 3,584 square meters.

Therefore, the area of the parcel Mr. Jones retained is 

\displaystyle 11,200 -3,584= 7,616 square meters.

Learning Tools by Varsity Tutors