SSAT Middle Level Math : Data Analysis and Probability

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #581 : Ssat Middle Level Quantitative (Math)

What is the value of y in the pattern below?

\displaystyle \frac{2}{3}, \frac{4}{6}, \frac{6}{9}, \frac{y}{12}

Possible Answers:

\displaystyle 9

\displaystyle 4

\displaystyle 6

\displaystyle 8

Correct answer:

\displaystyle 8

Explanation:

What that the fractions in this pattern have in common is that they are all the equivalent of \displaystyle \frac{2}{3}

The value of y should be a number that is the equivalent of \displaystyle \frac{2}{3} when divided by 12. 

Given that \displaystyle \frac{1}{3} of 12 is 4, \displaystyle \frac{2}{3} of 12 would be equal to 8, the correct answer. 

Example Question #13 : Sets

What is the value of \displaystyle x in the sequence below?

\displaystyle 108, 36, 12, 4, x

Possible Answers:

\displaystyle \frac{4}{3}

\displaystyle 1

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{4} 

Correct answer:

\displaystyle \frac{4}{3}

Explanation:

In this sequence, every subsequent number is equal to one third of the preceding number:

\displaystyle 108, 36, 12, 3, x

\displaystyle 108\div3=36

\displaystyle 36\div3=12

\displaystyle 12\div3=4

Given that \displaystyle 4\div3 =\frac{4}{3}, that is the correct answer. 

Example Question #581 : Ssat Middle Level Quantitative (Math)

Find the next number that should appear in the set below:

\displaystyle \frac{1}{2}, \frac{1}{4},\frac{1}{8}, \frac{1}{16}

Possible Answers:

\displaystyle \frac{1}{18}

\displaystyle \frac{1}{24}

\displaystyle \frac{1}{32}

\displaystyle \frac{1}{40}

Correct answer:

\displaystyle \frac{1}{32}

Explanation:

In this set, each subsequent fraction is half the size of the preceding fraction; (the denominator is doubled for each successive fraction, but the numerator stays the same). Given that the last fraction in the set is \displaystyle \frac{1}{16}, it follows that the subsequent fraction will be \displaystyle \frac{1}{32}

Example Question #1 : Generate Two Numerical Patterns Using Two Given Rules: Ccss.Math.Content.5.Oa.B.3

Complete the table below using the equation \displaystyle y=3x+6

Screen shot 2015 07 27 at 8.14.00 am

Possible Answers:

\displaystyle 20

\displaystyle 19

\displaystyle 16

\displaystyle 17

\displaystyle 18

Correct answer:

\displaystyle 18

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=4. We can plug \displaystyle 4 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=3(4)+6

\displaystyle y=12+6

\displaystyle y=18

Example Question #2 : Generate Two Numerical Patterns Using Two Given Rules: Ccss.Math.Content.5.Oa.B.3

Complete the table below using the equation \displaystyle y=4x+2

Screen shot 2015 07 27 at 8.25.13 am

Possible Answers:

\displaystyle 20

\displaystyle 22

\displaystyle 17

\displaystyle 18

\displaystyle 19

Correct answer:

\displaystyle 22

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=5. We can plug \displaystyle 5 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=4(5)+2

\displaystyle y=20+2

\displaystyle y=22

Example Question #171 : Operations & Algebraic Thinking

Complete the table below using the equation \displaystyle y=5x+7

Screen shot 2015 07 27 at 8.30.35 am

Possible Answers:

\displaystyle 37

\displaystyle 38

\displaystyle 39

\displaystyle 41

\displaystyle 40

Correct answer:

\displaystyle 37

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=6. We can plug \displaystyle 6 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=5(6)+7

\displaystyle y=30+7

\displaystyle y=37

Example Question #172 : Operations & Algebraic Thinking

Complete the table below using the equation \displaystyle y=6x+11

Screen shot 2015 07 27 at 8.34.12 am

Possible Answers:

\displaystyle 88

\displaystyle 87

\displaystyle 90

\displaystyle 91

\displaystyle 89

Correct answer:

\displaystyle 89

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=13. We can plug \displaystyle 13 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=6(13)+11

\displaystyle y=78+11

\displaystyle y=89

Example Question #1 : Generate Two Numerical Patterns Using Two Given Rules: Ccss.Math.Content.5.Oa.B.3

Complete the table below using the equation \displaystyle y=8x+12

Screen shot 2015 07 27 at 8.42.18 am

Possible Answers:

\displaystyle 56

\displaystyle 54

\displaystyle 55

\displaystyle 53

\displaystyle 52

Correct answer:

\displaystyle 52

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=5. We can plug \displaystyle 5 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=8(5)+12

\displaystyle y=40+12

\displaystyle y=52

Example Question #174 : Operations & Algebraic Thinking

Complete the table below using the equation \displaystyle y=9x+10

Screen shot 2015 07 27 at 8.48.14 am

Possible Answers:

\displaystyle 55

\displaystyle 51

\displaystyle 54

\displaystyle 53

\displaystyle 52

Correct answer:

\displaystyle 55

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y\displaystyle x=5 value for . We can plug \displaystyle 5 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=9(5)+10

\displaystyle y=45+10

\displaystyle y=55

Example Question #175 : Operations & Algebraic Thinking

Complete the table below using the equation \displaystyle y=10x+4

Screen shot 2015 07 27 at 8.52.55 am

Possible Answers:

\displaystyle 174

\displaystyle 164

\displaystyle 162

\displaystyle 184

\displaystyle 172

Correct answer:

\displaystyle 164

Explanation:

In order to solve this question, we need to use both the equation and the table. We are looking for the corresponding \displaystyle y value for \displaystyle x=16. We can plug \displaystyle 16 into the \displaystyle x in our equation to solve for \displaystyle y.

\displaystyle y=10(16)+4

\displaystyle y=160+4

\displaystyle y=164

Learning Tools by Varsity Tutors