SSAT Elementary Level Math : SSAT Elementary Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Select the answer that demonstrates the associative property of multiplication for \(\displaystyle 9\times3\times4\)

 

Possible Answers:

\(\displaystyle (9\times3)\times4=108\) and \(\displaystyle 9\times(3\times4)=108\)

\(\displaystyle (9\times1)\times4=108\) and \(\displaystyle 9\times(1\times4)=108\)

\(\displaystyle (9\times2)\times4=108\) and \(\displaystyle 9\times(3\times4)=108\)

\(\displaystyle (9\times3)\times4=108\) and \(\displaystyle 9\times(2\times4)=108\)

\(\displaystyle 9\times12=108\) and \(\displaystyle 12\times9=108\)

Correct answer:

\(\displaystyle (9\times3)\times4=108\) and \(\displaystyle 9\times(3\times4)=108\)

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\(\displaystyle (9\times3)\times4=108\) and \(\displaystyle 9\times(3\times4)=108\)

Example Question #392 : How To Multiply

Select the answer that demonstrates the associative property of multiplication for \(\displaystyle 1\times4\times3\)

 

 

Possible Answers:

\(\displaystyle (1\times2)\times3=12\) and \(\displaystyle 1\times(2\times3)=12\)

\(\displaystyle (1\times5)\times3=12\) and \(\displaystyle 1\times(4\times3)=12\)

\(\displaystyle 6\times2=12\) and \(\displaystyle 2\times6=12\)

\(\displaystyle (1\times4)\times3=12\) and \(\displaystyle 1\times(4\times3)=12\)

\(\displaystyle (1\times4)\times3=12\) and \(\displaystyle 1\times(3\times3)=12\)

Correct answer:

\(\displaystyle (1\times4)\times3=12\) and \(\displaystyle 1\times(4\times3)=12\)

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\(\displaystyle (1\times4)\times3=12\) and \(\displaystyle 1\times(4\times3)=12\)

Example Question #21 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Select the answer that demonstrates the associative property of multiplication for \(\displaystyle 11\times2\times3\)

 

 

Possible Answers:

\(\displaystyle (11\times1)\times3=66\) and \(\displaystyle 11\times(1\times3)=66\)

\(\displaystyle (11\times5)\times3=66\) and \(\displaystyle 11\times(2\times3)=66\)

\(\displaystyle (11\times3)\times3=66\) and \(\displaystyle 11\times(3\times3)=66\)

\(\displaystyle (11\times2)\times3=66\) and \(\displaystyle 11\times(4\times3)=66\)

\(\displaystyle (11\times2)\times3=66\) and \(\displaystyle 11\times(2\times3)=66\)

Correct answer:

\(\displaystyle (11\times2)\times3=66\) and \(\displaystyle 11\times(2\times3)=66\)

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\(\displaystyle (11\times2)\times3=66\) and \(\displaystyle 11\times(2\times3)=66\)

Example Question #22 : Understanding Properties Of Multiplication And The Relationship Between Multiplication And Division

Select the answer that demonstrates the associative property of multiplication for \(\displaystyle 4\times2\times7\)

 

 

Possible Answers:

\(\displaystyle (4\times1)\times7=56\) and \(\displaystyle 4\times(1\times7)=56\)

\(\displaystyle (4\times2)\times7=56\) and \(\displaystyle 4\times(3\times7)=56\)

\(\displaystyle (4\times5)\times7=56\) and \(\displaystyle 4\times(5\times7)=56\)

\(\displaystyle (4\times3)\times7=56\) and \(\displaystyle 4\times(2\times7)=56\)

\(\displaystyle (4\times2)\times7=56\) and \(\displaystyle 4\times(2\times7)=56\)

Correct answer:

\(\displaystyle (4\times2)\times7=56\) and \(\displaystyle 4\times(2\times7)=56\)

Explanation:

The associative property of multiplication says that we can group numbers in any order to multiply them and our product, or answer, will be the same. 

\(\displaystyle (4\times2)\times7=56\) and \(\displaystyle 4\times(2\times7)=56\)

Example Question #392 : How To Multiply

Fill in the missing piece of the table. 

Screen shot 2015 09 01 at 9.24.25 am

Possible Answers:

\(\displaystyle 300\textup,000\)

\(\displaystyle 3000\textup,000\)

\(\displaystyle 3\textup,000\)

\(\displaystyle 30\textup,000\)

\(\displaystyle 300\)

Correct answer:

\(\displaystyle 300\textup,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1km}{100\textup,000 cm}=\frac{3km}{x}\)

First we cross multiply. 

\(\displaystyle 1km(x)=3km(100\textup,000cm)\) 

Then we divide each side by \(\displaystyle 1km\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1km(x)}{1km}=\frac{3km(100\textup,000cm)}{1km}\)

\(\displaystyle x=300\textup,000 cm\)

 

Example Question #393 : How To Multiply

Fill in the missing piece of the table. 


Screen shot 2015 09 01 at 9.27.44 am

Possible Answers:

\(\displaystyle 30\textup,000\)

\(\displaystyle 300\)

\(\displaystyle 300\textup,000\)

\(\displaystyle 30\)

\(\displaystyle 3\textup,000\)

Correct answer:

\(\displaystyle 3\textup,000\)

Explanation:

To solve this problem we can set up a proportion and cross multiply to solve for our unknown. 

\(\displaystyle \frac{1km}{1\textup,000 m}=\frac{3km}{x}\)

First we cross multiply. 

\(\displaystyle 1km(x)=3km(1\textup,000m)\) 

Then we divide each side by \(\displaystyle 1km\) to isolate the \(\displaystyle x\).

\(\displaystyle \frac{1km(x)}{1km}=\frac{3km(1\textup,000m)}{1km}\)

\(\displaystyle x=3\textup,000 m\)

Example Question #394 : How To Multiply

Which sequence below follows the rule of multiplying \(\displaystyle 4?\)

 

Possible Answers:

\(\displaystyle 4,12,16\)

\(\displaystyle 9,27,54\)

\(\displaystyle 4,8,12\)

\(\displaystyle 2,4,6\)

\(\displaystyle 8,32,128\)

Correct answer:

\(\displaystyle 8,32,128\)

Explanation:

The only sequence that multiplies \(\displaystyle 4\) each time is \(\displaystyle 8,32,128\)

\(\displaystyle 8\times4=32\)

\(\displaystyle 32\times4=128\)

Example Question #395 : How To Multiply

Which sequence below follows the rule of multiplying \(\displaystyle 3?\)

 

Possible Answers:

\(\displaystyle 5,7,9\)

\(\displaystyle 6,18, 24\)

\(\displaystyle 12,24,36\)

\(\displaystyle 3,9,27\)

\(\displaystyle 3,6,9\)

Correct answer:

\(\displaystyle 3,9,27\)

Explanation:

The only sequence that multiplies \(\displaystyle 3\) each time is \(\displaystyle 3,9,27\)

\(\displaystyle 3\times3=9\)

\(\displaystyle 9\times3=27\)

Example Question #782 : Operations & Algebraic Thinking

What is the pattern for the numbers in the X column to the numbers in the Y column? 

Screen shot 2015 09 23 at 10.32.19 am

Possible Answers:

Multiply \(\displaystyle 2\)

Add \(\displaystyle 4\)

Subtract \(\displaystyle 2\)

Add \(\displaystyle 2\)

Multiply \(\displaystyle 4\)

Correct answer:

Multiply \(\displaystyle 4\)

Explanation:

Each X value is multiplied by \(\displaystyle 4\) to get the Y value. 

\(\displaystyle 2\times4=8\)

\(\displaystyle 4\times4=16\)

\(\displaystyle 6\times4=24\)

\(\displaystyle 8\times4=32\)

To find the rule, you may have to do some trial and error. The most important thing to remember is, once you think you have the rule, make sure to test the rule with all of the X values. 

Example Question #7 : Identify Arithmetic Patterns: Ccss.Math.Content.3.Oa.D.9

What is the pattern for the numbers in the X column to the numbers in the Y column? 


Screen shot 2015 09 23 at 10.32.25 am

Possible Answers:

Divide \(\displaystyle 3\)

Multiply \(\displaystyle 3\)

Add \(\displaystyle 8\)

Add \(\displaystyle 4\)

Subtract \(\displaystyle 4\)

Correct answer:

Multiply \(\displaystyle 3\)

Explanation:

Each X value is multiplied by \(\displaystyle 3\) to get the Y value. 

\(\displaystyle 2\times3=6\)

\(\displaystyle 4\times3=12\)

\(\displaystyle 6\times3=18\)

\(\displaystyle 8\times3=24\)

To find the rule, you may have to do some trial and error. The most important thing to remember is, once you think you have the rule, make sure to test the rule with all of the X values. 

Learning Tools by Varsity Tutors