SSAT Elementary Level Math : Quadrilaterals

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Solve Problems Involving Measurement And Conversion Of Measurements

What is the length of a rectangular room with an area of \displaystyle 56ft^2 and a width of \displaystyle 7ft?

Possible Answers:

\displaystyle 5ft

\displaystyle 7ft

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 9ft

Correct answer:

\displaystyle 8ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 56=l\times 7

\displaystyle \frac{56}{7}=\frac{l\times 7}{7}

\displaystyle 8=l

Example Question #101 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 80ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 18ft

\displaystyle 20ft

\displaystyle 16ft

\displaystyle 10ft

\displaystyle 8ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 80=l\times 8

\displaystyle \frac{80}{8}=\frac{l\times 8}{8}

\displaystyle 10=l

Example Question #102 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 100ft^2 and a width of \displaystyle 5ft?

 

Possible Answers:

\displaystyle 30ft

\displaystyle 25ft

\displaystyle 20ft

\displaystyle 10ft

\displaystyle 15ft

Correct answer:

\displaystyle 20ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 100=l\times 5

\displaystyle \frac{100}{5}=\frac{l\times 5}{5}

\displaystyle 20=l

Example Question #103 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 120ft^2 and a width of \displaystyle 10ft?

 

Possible Answers:

\displaystyle 11ft

\displaystyle 9ft

\displaystyle 14ft

\displaystyle 8ft

\displaystyle 12ft

Correct answer:

\displaystyle 12ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 120=l\times 10

\displaystyle \frac{120}{10}=\frac{l\times 10}{10}

\displaystyle 12=l

Example Question #104 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 48ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 9ft

\displaystyle 5ft

\displaystyle 6ft

\displaystyle 7ft

\displaystyle 8ft

Correct answer:

\displaystyle 6ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 48=l\times 8

\displaystyle \frac{48}{8}=\frac{l\times 8}{8}

\displaystyle 6=l

Example Question #105 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 99ft^2 and a width of \displaystyle 9ft?

 

Possible Answers:

\displaystyle 8ft

\displaystyle 10ft

\displaystyle 11ft

\displaystyle 9ft

\displaystyle 7ft

Correct answer:

\displaystyle 11ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 99=l\times 9

\displaystyle \frac{99}{9}=\frac{l\times 9}{9}

\displaystyle 11=l

Example Question #82 : Plane Geometry

What is the length of a rectangular room with an area of \displaystyle 72ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 11ft

\displaystyle 10ft

\displaystyle 9ft

\displaystyle 12ft

\displaystyle 13ft

Correct answer:

\displaystyle 9ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 72=l\times 8

\displaystyle \frac{72}{8}=\frac{l\times 8}{8}

\displaystyle 9=l

Example Question #106 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 80ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 6ft

\displaystyle 9ft

\displaystyle 10ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 80=l\times 8

\displaystyle \frac{80}{8}=\frac{l\times 8}{8}

\displaystyle 10=l

Example Question #52 : Rectangles

What is the length of a rectangular room with an area of \displaystyle 42ft^2 and a width of \displaystyle 7ft?

 

Possible Answers:

\displaystyle 6ft

\displaystyle 5ft

\displaystyle 7ft

\displaystyle 4ft

\displaystyle 8ft

Correct answer:

\displaystyle 6ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 42=l\times 7

\displaystyle \frac{42}{7}=\frac{l\times 7}{7}

\displaystyle 6=l

Example Question #107 : Quadrilaterals

What is the length of a rectangular room with an area of \displaystyle 49ft^2 and a width of \displaystyle 7ft?

 

Possible Answers:

\displaystyle 5ft

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 4ft

\displaystyle 6ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 49=l\times 7

\displaystyle \frac{49}{7}=\frac{l\times 7}{7}

\displaystyle 7=l

Learning Tools by Varsity Tutors