SSAT Elementary Level Math : How to find the area of a rectangle

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #151 : Rectangles

What is the length of a rectangular room with an area of \displaystyle 63ft^2 and a width of \displaystyle 9ft?

 

Possible Answers:

\displaystyle 11ft

\displaystyle 7ft

\displaystyle 9ft

\displaystyle 8ft

\displaystyle 10ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 63=l\times 9

\displaystyle \frac{63}{9}=\frac{l\times 9}{9}

\displaystyle 7=l

Example Question #37 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 77ft^2 and a width of \displaystyle 11ft?

 

Possible Answers:

\displaystyle 9ft

\displaystyle 10ft

\displaystyle 7ft

\displaystyle 8ft

\displaystyle 6ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 77=l\times 11

\displaystyle \frac{77}{11}=\frac{l\times 11}{11}

\displaystyle 7=l

Example Question #91 : Parallelograms

What is the length of a rectangular room with an area of \displaystyle 132ft^2 and a width of \displaystyle 11ft?

 

Possible Answers:

\displaystyle 12ft

\displaystyle 10ft

\displaystyle 14ft

\displaystyle 11ft

\displaystyle 13ft

Correct answer:

\displaystyle 12ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 132=l\times 11

\displaystyle \frac{132}{11}=\frac{l\times 11}{11}

\displaystyle 12=l

Example Question #31 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 64ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 8ft

\displaystyle 5ft

\displaystyle 6ft

\displaystyle 9ft

\displaystyle 7ft

Correct answer:

\displaystyle 8ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 64=l\times 8

\displaystyle \frac{64}{8}=\frac{l\times 8}{8}

\displaystyle 8=l

Example Question #40 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 65ft^2 and a width of \displaystyle 5ft?

 

Possible Answers:

\displaystyle 10ft

\displaystyle 13ft

\displaystyle 11ft

\displaystyle 12ft

\displaystyle 9ft

Correct answer:

\displaystyle 13ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 65=l\times 5

\displaystyle \frac{65}{5}=\frac{l\times 5}{5}

\displaystyle 13=l

Example Question #41 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 84ft^2 and a width of \displaystyle 12ft?

 

Possible Answers:

\displaystyle 10ft

\displaystyle 9ft

\displaystyle 8ft

\displaystyle 7ft

\displaystyle 11ft

Correct answer:

\displaystyle 7ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 84=l\times 12

\displaystyle \frac{84}{12}=\frac{l\times 12}{12}

\displaystyle 7=l

Example Question #42 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 90ft^2 and a width of \displaystyle 15ft?

 

Possible Answers:

\displaystyle 5ft

\displaystyle 6ft

\displaystyle 9ft

\displaystyle 7ft

\displaystyle 8ft

Correct answer:

\displaystyle 6ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 90=l\times 15

\displaystyle \frac{90}{15}=\frac{l\times 15}{15}

\displaystyle 6=l

Example Question #1341 : Common Core Math: Grade 4

What is the length of a rectangular room with an area of \displaystyle 96ft^2 and a width of \displaystyle 8ft?

 

Possible Answers:

\displaystyle 12ft

\displaystyle 11ft

\displaystyle 13ft

\displaystyle 14ft

\displaystyle 10ft

Correct answer:

\displaystyle 12ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 96=l\times 8

\displaystyle \frac{96}{8}=\frac{l\times 8}{8}

\displaystyle 12=l

Example Question #101 : Parallelograms

What is the length of a rectangular room with an area of \displaystyle 20ft^2 and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 4ft

\displaystyle 6ft

\displaystyle 5ft

\displaystyle 2ft

\displaystyle 3ft

Correct answer:

\displaystyle 5ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 20=l\times 4

\displaystyle \frac{20}{4}=\frac{l\times 4}{4}

\displaystyle 5=l

Example Question #45 : Apply Area And Perimeter Formulas For Rectangles: Ccss.Math.Content.4.Md.A.3

What is the length of a rectangular room with an area of \displaystyle 48ft^2 and a width of \displaystyle 4ft?

 

Possible Answers:

\displaystyle 10ft

\displaystyle 11ft

\displaystyle 8ft

\displaystyle 12ft

\displaystyle 9ft

Correct answer:

\displaystyle 12ft

Explanation:

\displaystyle A=l\times w

We have the area and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 48=l\times 4

\displaystyle \frac{48}{4}=\frac{l\times 4}{4}

\displaystyle 12=l

Learning Tools by Varsity Tutors