SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #5 : How To Find The Solution To An Inequality With Addition

Solve for .

Possible Answers:

Correct answer:

Explanation:

We want to isolate the variable on one side and numbers on another side. Treat like a normal equation. 

 Subtract  on both sides.

Example Question #6 : How To Find The Solution To An Inequality With Addition

Solve for .

Possible Answers:

Correct answer:

Explanation:

We want to isolate the variable on one side and numbers on another side. Treat like a normal equation. 

 We need to set-up two equations since its absolute value.

 Subtract  on both sides. 

 Divide  on both sides which flips the sign.

 Subtract  on both sides. 

Since we have the 's being either greater than or less than the values, we can combine them to get .

Example Question #23 : Inequalities

Solve for .

Possible Answers:

Correct answer:

Explanation:

We want to isolate the variable on one side and numbers on another side. Treat like a normal equation. 

 We need to set-up two equations since it's absolute value.

 Subtract  on both sides.

 Divide  on both sides.

 Distribute the negative sign to each term in the parenthesis.

 Add  and subtract  on both sides.

 Divide  on both sides.

 We must check each answer. Let's try .

     This is true therefore  is a correct answer. Let's next try .

   This is not true therefore  is not correct. 

Final answer is just .

Example Question #6 : How To Find The Solution To An Inequality With Addition

If x+1< 4 and y-2<-1 , then which of the following could be the value of ?

Possible Answers:

Correct answer:

Explanation:

To solve this problem, add the two equations together:

x+1<4

y-2<-1

x+1+y-2<4-1

x+y-1<3

x+y<4

The only answer choice that satisfies this equation is 0, because 0 is less than 4.

Example Question #25 : Inequalities

Solve for :

Possible Answers:

Correct answer:

Explanation:

We want to isolate the variable on one side and numbers on another side. Treat like a normal equation. 

 Subtract  on both sides.

 Divide  on both sides.

Example Question #26 : Inequalities

Solve for :

Possible Answers:

Correct answer:

Explanation:

We want to isolate the variable on one side and numbers on another side. Treat like a normal equation. 

 We need to set-up two equations since it's absolute value.

 Subtract  on both sides.

 Distribute the negative sign to each term in the parenthesis.

 Add  and subtract  on both sides.

 Divide  on both sides.

 We must check each answer. Let's try .

     This is true therefore  is a correct answer. Let's next try .

  This is not true therefore  is not correct. 

Final answer is just .

Example Question #2 : How To Find The Solution To An Inequality With Multiplication

If –1 < n < 1, all of the following could be true EXCEPT:

Possible Answers:

n2 < 2n

(n-1)2 > n

n2 < n

|n2 - 1| > 1

16n2 - 1 = 0

Correct answer:

|n2 - 1| > 1

Explanation:

N_part_1

N_part_2

N_part_3

N_part_4

N_part_5

Example Question #3 : How To Find The Solution To An Inequality With Multiplication

(√(8) / -x ) <  2. Which of the following values could be x?

Possible Answers:

All of the answers choices are valid.

-1

-3

-2

-4

Correct answer:

-1

Explanation:

The equation simplifies to x > -1.41. -1 is the answer.

Example Question #4 : How To Find The Solution To An Inequality With Multiplication

Solve for x

\small 3x+7 \geq -2x+4

 

Possible Answers:

\small x \geq -\frac{3}{5}

\small x \leq -\frac{3}{5}

\small x \geq \frac{3}{5}

\small x \leq \frac{3}{5}

Correct answer:

\small x \geq -\frac{3}{5}

Explanation:

\small 3x+7 \geq -2x+4

\small 3x \geq -2x-3

\small 5x \geq -3

\small x\geq -\frac{3}{5}

Example Question #5 : How To Find The Solution To An Inequality With Multiplication

We have , find the solution set for this inequality. 

Possible Answers:

Correct answer:

Explanation:

Learning Tools by Varsity Tutors