SAT Math : How to find f(x)

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #962 : Psat Mathematics

Consider the function defined as follows:

Find:

Possible Answers:

Correct answer:

Explanation:

The notation used above can be confusing. Let:

We can now find the answer by substituting the appropriate values into the equation:

Therefore:

Finally:

Example Question #41 : How To Find F(X)

Solve for .

Possible Answers:

Correct answer:

Explanation:

To solve for , we actually have to solve for , when . We simply replace any with a .

The answer of  when  is .

Example Question #1 : How To Find F(X)

If f(x)=3x and g(x)=2x+2, what is the value of f(g(x)) when x=3?

 

Possible Answers:

18

20

22

24

Correct answer:

24

Explanation:

With composition of functions (as with the order of operations) we perform what is inside of the parentheses first. So, g(3)=2(3)+2=8 and then f(8)=24.

 

 

 

Example Question #1 : How To Find F(X)

g(x) = 4x – 3

h(x) = .25πx + 5

If f(x)=g(h(x)). What is f(1)?

Possible Answers:

42

19π – 3

4

π + 17

13π + 3

Correct answer:

π + 17

Explanation:

First, input the function of h into g. So f(x) = 4(.25πx + 5) – 3, then simplify this expression f(x) = πx + 20 – 3 (leave in terms of π since our answers are in terms of π). Then plug in 1 for x to get π + 17.

Example Question #2791 : Sat Mathematics

If 7y = 4x - 12, then x = 

Possible Answers:
(7y+12)/3
(7y+12)/4
(7y+3)/12
(7y-12)/4
Correct answer: (7y+12)/4
Explanation:

Adding 12 to both sides and dividing by 4 yields (7y+12)/4.

Example Question #2791 : Sat Mathematics

If F(x) = 2x2 + 3 and G(x) = x – 3, what is F(G(x))?

Possible Answers:

2x2  

2x2 + 12x +18

6x2 + 5x

2x2 – 12x +21

6x2 – 12x

Correct answer:

2x2 – 12x +21

Explanation:

A composite function substitutes one function into another function and then simplifies the resulting expression.  F(G(x)) means the G(x) gets put into F(x).

F(G(x)) = 2(x – 3)2 + 3 = 2(x2 – 6x +9) + 3 = 2x2 – 12x + 18 + 3 = 2x2 – 12x + 21

G(F(x)) = (2x2 +3) – 3 = 2x2

Example Question #4 : Algebraic Functions

If a(x) = 2x+ x, and b(x) = –2x, what is a(b(2))?

Possible Answers:

–132

–503

503

132

128

Correct answer:

–132

Explanation:

When functions are set up within other functions like in this problem, the function closest to the given variable is performed first. The value obtained from this function is then plugged in as the variable in the outside function. Since b(x) = –2x, and x = 2, the value we obtain from b(x) is –4. We then plug this value in for x in the a(x) function. So a(x) then becomes 2(–43) + (–4), which equals –132.

Example Question #2792 : Sat Mathematics

Let F(x) = x3 + 2x2 – 3 and G(x) = x + 5.  Find F(G(x))

Possible Answers:

x3 + 17x2 + 95x + 172

x3 + 2x2 – x – 8

x3 + x2 + 2

x3 + 2x2 + x + 2

x3x2x + 8

Correct answer:

x3 + 17x2 + 95x + 172

Explanation:

F(G(x)) is a composite function where the expression G(x) is substituted in for x in F(x)

F(G(x)) = (x + 5)3 + 2(x + 5)2 – 3 = x3 + 17x2 + 95x + 172

G(F(x)) = x3 + x2 + 2

F(x) – G(x) = x3 + 2x2 – x – 8

F(x) + G(x) =  x3 + 2x2 + x + 2

Example Question #3 : How To Find F(X)

What is the value of xy2(xy – 3xy) given that = –3 and = 7?

Possible Answers:

2881

–6174

3565

–2881

Correct answer:

–6174

Explanation:

Evaluating yields –6174.

–147(–21 + 63) =

–147 * 42 = –6174

Example Question #21 : Algebraic Functions

f(x)=x^{2}+2

g(x)=x-4

Find g(f(2)).

Possible Answers:

\dpi{100} \small 2

\dpi{100} \small 6

\dpi{100} \small 1

\dpi{100} \small 4

\dpi{100} \small 3

Correct answer:

\dpi{100} \small 2

Explanation:

g(f(2)) is \dpi{100} \small 2. To start, we find that f(2)=2^{2}+2=4+2=6. Using this, we find that g(6)=6-4=2.

Alternatively, we can find that g(f(x))=(x^{2}+2)-4=x^{2}-2. Then, we find that g(f(2))=2^{2}-2=4-2=2.

Learning Tools by Varsity Tutors