SAT II Math II : SAT Subject Test in Math II

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Finding Sides With Trigonometry

The area of a regular nonagon (nine-sided polygon) is 900. Give its perimeter to the nearest whole number.

Possible Answers:

\(\displaystyle 76\)

\(\displaystyle 93\)

\(\displaystyle 109\)

\(\displaystyle 165\)

\(\displaystyle 137\)

Correct answer:

\(\displaystyle 109\)

Explanation:

A regular nonagon can be divided into eighteen congruent triangles by its nine radii and its nine apothems, each of which is shaped as shown:

 

 Thingy_1

The area of one such triangle is \(\displaystyle \frac{1}{2}ab\), so the area of the entire nonagon is eighteen times this, or \(\displaystyle 18 \cdot \frac{1}{2}ab = 9ab\). Since the area is 900,

\(\displaystyle 9ab = 900\), or

\(\displaystyle ab= 100\).

Also,

\(\displaystyle \frac{a}{b} = \tan 70^{\circ }\), or equivalently, \(\displaystyle a=b \tan 70^{\circ }\), so solve for \(\displaystyle b\) in the equation

\(\displaystyle b \tan 70^{\circ } \cdot b= 100\)

\(\displaystyle b ^{2} \cdot \tan 70^{\circ } = 100\)

\(\displaystyle b ^{2} = \frac{100}{\tan 70^{\circ } } \approx \frac{100}{ 2.7475 } \approx 36.40\)

\(\displaystyle b \approx \sqrt{36.40} \approx 6.03\)

The perimeter of the nonagon is eighteen times this:

\(\displaystyle 18 \cdot 6.03 \approx 109\), the correct response.

 

Example Question #3 : Finding Sides With Trigonometry

nonagon is a nine-sided polygon.

Nonagon \(\displaystyle ABCDEFGHI\) has diagonal \(\displaystyle \overline{AC}\) with length 10. To the nearest tenth, give the length of one side.

Possible Answers:

\(\displaystyle 5.9\)

\(\displaystyle 8.7\)

\(\displaystyle 6.2\)

\(\displaystyle 8.3\)

\(\displaystyle 5.3\)

Correct answer:

\(\displaystyle 5.3\)

Explanation:

Construct the nonagon with diagonal \(\displaystyle \overline{AC}\).

We will concern ourselves with finding the length of \(\displaystyle \overline{BC}\).

Since \(\displaystyle m \angle ABC = \frac{(9-2)\cdot 180^{ \circ}}{9}= 140 ^{ \circ}\), and \(\displaystyle \Delta ABC\) is isosceles, then  

\(\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 140^{\circ }) = 20^{\circ }\)

The following diagram is formed (limiiting ourselves to \(\displaystyle \Delta ABC\)):

 Decagon

By the Law of Sines,

\(\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}\)

\(\displaystyle \frac{BC}{\sin 20^{\circ }} = \frac{10} {\sin 140^{\circ }}\)

\(\displaystyle BC= \frac{10\sin 20^{\circ }} {\sin 140^{\circ }}\)

\(\displaystyle BC\approx \frac{10\cdot 0.3420} {0.6428}\)

\(\displaystyle BC \approx 5.3\)

Example Question #2 : Finding Sides With Trigonometry

Give the length of one side of a regular pentagon whose diagonals measure 10 each. (Nearest tenth)

Possible Answers:

\(\displaystyle 5.8\)

\(\displaystyle 6.2\)

\(\displaystyle 8.5\)

\(\displaystyle 7.3\)

\(\displaystyle 5.4\)

Correct answer:

\(\displaystyle 6.2\)

Explanation:

Construct the pentagon with diagonal \(\displaystyle \overline{AC}\).

We will concern ourselves with finding the length of \(\displaystyle \overline{BC}\).

Since \(\displaystyle m \angle ABC = \frac{(5-2)\cdot 180^{ \circ}}{5}= 108 ^{ \circ}\), and \(\displaystyle \Delta ABC\) is isosceles, then  

\(\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 108^{\circ }) = 36^{\circ }\)

The following diagram is formed:

Pentagon

By the Law of Sines,

\(\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}\)

\(\displaystyle \frac{BC}{\sin 36^{\circ }} = \frac{10} {\sin 108^{\circ }}\)

\(\displaystyle BC= \frac{10\sin 36^{\circ }} {\sin 108^{\circ }}\)

\(\displaystyle BC\approx \frac{10\cdot 0.5878} {0.9511}\)

\(\displaystyle BC \approx 6.2\)

Example Question #6 : Finding Sides With Trigonometry

In \(\displaystyle \bigtriangleup ABC\):

\(\displaystyle m \angle A = 116 ^{\circ }\)

\(\displaystyle m \angle B = 20^{\circ }\)

\(\displaystyle BC = 40\)

Evaluate \(\displaystyle AC\) to the nearest whole unit.

Possible Answers:

\(\displaystyle 31\)

\(\displaystyle 105\)

\(\displaystyle 86\)

\(\displaystyle 19\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 15\)

Explanation:

The Law of Sines states that given two angles of a triangle with measures \(\displaystyle \alpha, \beta\), and their opposite sides of lengths \(\displaystyle a,b\), respectively,

\(\displaystyle \frac{\sin \alpha}{a} = \frac{\sin \beta}{b}\),

or, equivalently,

\(\displaystyle \frac{b}{\sin \beta} = \frac{a}{\sin \alpha}\).

\(\displaystyle \overline{AC }\), whose length is desired, and \(\displaystyle \overline{BC}\), whose length is given, are opposite \(\displaystyle \angle B\) and \(\displaystyle \angle A\), respectively, so, in the sine formula, set \(\displaystyle b = AC\)\(\displaystyle \beta = m \angle B = 20 ^{\circ }\)\(\displaystyle a = BC = 40\), and \(\displaystyle \alpha = m \angle A = 116^{\circ }\) in the Law of Sines formula, then solve for \(\displaystyle AC\):

\(\displaystyle \frac{AC}{\sin 20^{\circ }} = \frac{40}{\sin 116^{\circ }}\)

\(\displaystyle \frac{AC}{\sin 20^{\circ }} \cdot \sin 20^{\circ } = \frac{40}{\sin 116^{\circ }} \cdot \sin 20^{\circ }\)

\(\displaystyle AC = \frac{40}{\sin 116^{\circ }} \cdot \sin 20^{\circ }\)

\(\displaystyle \approx \frac{40}{0.8988} \cdot 0.3420\)

\(\displaystyle \approx 15\)

Example Question #7 : Finding Sides With Trigonometry

Suppose the distance from a student's eyes to the floor is 4 feet.  He stares up at the top of a tree that is 20 feet away, creating a 30 degree angle of elevation. How tall is the tree?

Possible Answers:

\(\displaystyle 14\)

\(\displaystyle \frac{20\sqrt{3}+12}{3}\)

\(\displaystyle \frac{20\sqrt{3}+4}{3}\)

\(\displaystyle \frac{20\sqrt{3}+12}{3}\)

\(\displaystyle 10\sqrt3+4\)

Correct answer:

\(\displaystyle \frac{20\sqrt{3}+12}{3}\)

Explanation:

The height of the tree requires using trigonometry to solve.  The distance of the student to the tree \(\displaystyle (20)\), partial height of the tree \(\displaystyle (P)\), and the distance between the student's eyes to the top of the tree will form the right triangle.

The tangent operation will be best used for this scenario, since we have the known distance of the student to the tree, and the partial height of the tree.

Set up an equation to solve for the partial height of the tree.

\(\displaystyle tan(\theta) = \frac{\textup{Opposite side to angle}}{\textup{Adjacent side to angle}}\)

\(\displaystyle tan(30) = \frac{P}{20}\)

Multiply by 20 on both sides.

\(\displaystyle P=20tan(30) = 20(\frac{\sqrt{3}}{3}) = \frac{20\sqrt{3}}{3}\)

We will need to add this with the height of the student's eyes to the ground to get the height of the tree.

\(\displaystyle \frac{20\sqrt{3}}{3} + 4 = \frac{20\sqrt{3}}{3} + \frac{12}{3}\)

The answer is:  \(\displaystyle \frac{20\sqrt{3}+12}{3}\)

Example Question #2 : Trigonometry

decagon is a ten-sided polygon.

Decagon \(\displaystyle ABCDEFGHIJ\) has diagonal \(\displaystyle \overline{AC}\) with length 10. To the nearest tenth, give the length of one side.

Possible Answers:

\(\displaystyle 5.3\)

\(\displaystyle 6.2\)

\(\displaystyle 8.7\)

\(\displaystyle 5.9\)

\(\displaystyle 8.3\)

Correct answer:

\(\displaystyle 5.3\)

Explanation:

Construct the decagon with diagonal \(\displaystyle \overline{AC}\).

We will concern ourselves with finding the length of \(\displaystyle \overline{BC}\).

Since \(\displaystyle m \angle ABC = \frac{(10-2)\cdot 180^{ \circ}}{10}= 144 ^{ \circ}\), and \(\displaystyle \Delta ABC\) is isosceles, then  

\(\displaystyle m \angle BAC = \frac{1}{2} (180^{\circ } - 144^{\circ }) = 18^{\circ }\)

The following diagram is formed (limiting ourselves to \(\displaystyle \Delta ABC\)):

 Decagon

By the Law of Sines,

\(\displaystyle \frac{BC}{\sin \left (m \angle BAC \right )} = \frac{AC} {\sin \left (m \angle ABC \right )}\)

\(\displaystyle \frac{BC}{\sin 18^{\circ }} = \frac{10} {\sin 144^{\circ }}\)

\(\displaystyle BC= \frac{10\sin 18^{\circ }} {\sin 144^{\circ }}\)

\(\displaystyle BC\approx \frac{10\cdot 0.3090} {0.5878}\)

\(\displaystyle BC \approx 5.3\)

Example Question #2 : Trigonometry

In \(\displaystyle \bigtriangleup ABC\):

\(\displaystyle AB = 23\)

\(\displaystyle AC = 34\)

\(\displaystyle BC = 25\)

Evaluate \(\displaystyle m \angle A\) to the nearest degree.

Possible Answers:

\(\displaystyle 43^{\circ }\)

\(\displaystyle 27^{\circ }\)

\(\displaystyle 90^{\circ }\)

\(\displaystyle 63^{\circ }\)

\(\displaystyle 47^{\circ }\)

Correct answer:

\(\displaystyle 47^{\circ }\)

Explanation:

The figure referenced is below: 

Triangle z

 

 

By the Law of Cosines, the relationship of the measure of an angle \(\displaystyle \gamma\) of a triangle and the three side lengths \(\displaystyle a\)\(\displaystyle b\), and \(\displaystyle c\)\(\displaystyle c\) the sidelength opposite the aforementioned angle, is as follows:

\(\displaystyle c^{2} = a ^{2} + b^{2} - 2ab \cos \gamma\)

All three side lengths are known, so we are solving for \(\displaystyle \gamma\). Setting

\(\displaystyle c = BC = 25\), the length of the side opposite the unknown angle;

\(\displaystyle a = AB = 23\);

\(\displaystyle b = AC = 34\);

and \(\displaystyle \gamma = \cos A\),

We get the equation

\(\displaystyle 25^{2} =23^{2} +34^{2} - 2 (23) (34)\cos A\)

\(\displaystyle 625 =529+1,156- 1,564 \cos A\)

\(\displaystyle 625 =1,685 - 1,564 \cos A\)

Solving for \(\displaystyle \cos A\):

\(\displaystyle 625 - 1,685 =1,685 - 1,564 \cos A - 1,685\)

\(\displaystyle -1.060 = - 1,564 \cos A\)

\(\displaystyle \frac{-1.060 }{- 1,564}= \frac{- 1,564 \cos A}{- 1,564}\)

\(\displaystyle \cos A \approx 0.6777\)

Taking the inverse cosine:

\(\displaystyle A = \cos ^{-1} 0.6777 \approx 47 ^{\circ }\),

the correct response.

Example Question #5 : Trigonometry

If \(\displaystyle sin(x)=0.5\), what is \(\displaystyle sin(8x)\) if \(\displaystyle x\) is between \(\displaystyle 0\) and \(\displaystyle 2\pi\)?

Possible Answers:

\(\displaystyle -0.5\)

\(\displaystyle -\frac{\sqrt{3}}{2}\)

\(\displaystyle 0.5\)

\(\displaystyle \frac{\sqrt{3}}{2}\)

\(\displaystyle -1.5\)

Correct answer:

\(\displaystyle -\frac{\sqrt{3}}{2}\)

Explanation:

Recall that \(\displaystyle sin(\frac{\pi}{6}) =0.5\).

Therefore, we are looking for \(\displaystyle sin(8*\frac{\pi}{6})\) or \(\displaystyle sin(\frac{4\pi}{3})\).

Now, this has a reference angle of \(\displaystyle \frac{\pi}{3}\), but it is in the third quadrant. This means that the value will be negative. The value of \(\displaystyle sin(\frac{\pi}{3})\) is \(\displaystyle \frac{\sqrt{3}}{2}\). However, given the quadrant of our angle, it will be \(\displaystyle -\frac{\sqrt{3}}{2}\).

Example Question #11 : Trigonometry

Find the value of \(\displaystyle 5tan(60)\) in exact form.

Possible Answers:

\(\displaystyle 10\sqrt3\)

\(\displaystyle \frac{5\sqrt{3}}{2}\)

\(\displaystyle \frac{10\sqrt3}{3}\)

\(\displaystyle 5\sqrt{3}\)

\(\displaystyle \frac{5\sqrt{3}}{3}\)

Correct answer:

\(\displaystyle 5\sqrt{3}\)

Explanation:

Recall that:

\(\displaystyle tan(\theta) = \frac{sin(\theta)}{cos(\theta)}\)

This means that:  \(\displaystyle tan(60) = \frac{sin(60)}{cos(60)}\)

\(\displaystyle sin(60) = \frac{\sqrt3}{2}\)

\(\displaystyle cos(60) = \frac{1}{2}\)

Divide the two terms.

\(\displaystyle \frac{\sqrt3}{2} \div \frac{1}{2} = \frac{\sqrt3}{2} \times \frac{2}{1} = \sqrt3\)

This means that \(\displaystyle 5tan(60) = 5\sqrt{3}\).

The answer is:  \(\displaystyle 5\sqrt{3}\)

Example Question #1 : Sum And Difference Identities For Tangent

According to the trigonometric identities, \(\displaystyle 1+cot^2(x)=?\)

Possible Answers:

\(\displaystyle tan(x)\)

\(\displaystyle \frac{1}{tan(x)}\)

\(\displaystyle 1\)

\(\displaystyle csc^2(x)\)

\(\displaystyle \frac{sin(x)}{cos(x)}\)

Correct answer:

\(\displaystyle csc^2(x)\)

Explanation:

The trigonometric identity \(\displaystyle 1+cot^2(x)=csc^2(x)\), is an important identity to memorize.

Some other identities that are important to know are:

\(\displaystyle \frac{sin(x)}{cos(x)}=tan(x)\)

\(\displaystyle cot(x)=\frac{1}{tan(x)}\)

\(\displaystyle sin^2(x)+cos^2(x)=1\)

Learning Tools by Varsity Tutors