SAT II Math II : Other Mathematical Relationships

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #122 : Mathematical Relationships

Add in modulo 9:

\(\displaystyle 5 + 6 + 5 + 4 + 3\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 4\)

\(\displaystyle 5\)

\(\displaystyle 8\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 5\)

Explanation:

In modulo 9 arithmetic, a number is congruent to the remainder of its division by 9. 

Since 

\(\displaystyle 5 + 6 + 5 + 4 + 3 = 23\)

and 

\(\displaystyle 23 \div 9 = 2\textrm{ R }5\),

\(\displaystyle 5 + 6 + 5 + 4 + 3 \equiv 5 \mod 9\),

making "5" the correct response.

Example Question #123 : Mathematical Relationships

\(\displaystyle V\) varies directly as \(\displaystyle T\) and inversely as \(\displaystyle P\)

If \(\displaystyle T = 273\) and \(\displaystyle P = 100\), then \(\displaystyle V = 1,000\).

To the nearest whole number, evaluate \(\displaystyle V\) if \(\displaystyle T = 293\) and \(\displaystyle P = 110\).

Possible Answers:

\(\displaystyle V \approx 909\)

\(\displaystyle V \approx 1,025\)

\(\displaystyle V \approx 976\)

\(\displaystyle V \approx 1,073\)

Insufficient information is given to answer the question.

Correct answer:

\(\displaystyle V \approx 976\)

Explanation:

\(\displaystyle V\) varies directly as \(\displaystyle T\) and inversely as \(\displaystyle P\). This means that for some constant of variation \(\displaystyle k\),

\(\displaystyle \frac{V P }{T } = k\)

Alternatively, 

\(\displaystyle \frac{V_{1}P_{1}}{T_{1}} = \frac{V_{2}P_{2}}{T_{2}}\)

We can substitute the initial conditions for thevariables on the left side and the final conditions for those on the right side, then solve for \(\displaystyle V_{2}\):

\(\displaystyle \frac{1,000 \cdot 100}{273} = \frac{V_{2} \cdot 110}{293}\)

\(\displaystyle \frac{V_{2} \cdot 110}{293} \cdot \frac{293}{ 110} = \frac{1,000 \cdot 100}{273} \cdot \frac{293}{ 110}\)

\(\displaystyle V_{2} = \frac{1,000 \cdot 100 \cdot 293}{273\cdot 110} \approx 976\)

Example Question #124 : Mathematical Relationships

\(\displaystyle E\) varies directly as both \(\displaystyle m\) and the square of \(\displaystyle v\).

If \(\displaystyle m = 10\) and \(\displaystyle v = 40\), then \(\displaystyle E= 8,000\)

Evaluate \(\displaystyle E\) if \(\displaystyle m = 15\) and \(\displaystyle v = 30\).

Possible Answers:

\(\displaystyle E = 6,750\)

\(\displaystyle E = 10,125\)

\(\displaystyle E = 9,481\)

\(\displaystyle E = 13,500\)

\(\displaystyle E = 9,000\)

Correct answer:

\(\displaystyle E = 6,750\)

Explanation:

\(\displaystyle E\) varies directly as both \(\displaystyle m\) and the square of \(\displaystyle v\). This means that for some constant of variation \(\displaystyle k\),

\(\displaystyle \frac{E}{mv^{2}} = k\).

Alternatively stated,

\(\displaystyle \frac{E_{1}}{m_{1}v_{1}^{2}} = \frac{E_{2}}{m_{2}v_{2}^{2}}\).

We can substitute the initial conditions for the variables on the left side and the final conditions for those on the right side, then solve for \(\displaystyle E_{2}\):

\(\displaystyle \frac{8,000}{10 \cdot 40^{2}} = \frac{E_{2}}{15 \cdot 30^{2}}\)

\(\displaystyle \frac{8,000}{10 \cdot 40^{2}} \cdot 15 \cdot 30^{2} = \frac{E_{2}}{15 \cdot 30^{2}} \cdot 15 \cdot 30^{2}\)

\(\displaystyle E_{2} = \frac{8,000 \cdot 15 \cdot 30^{2}}{10 \cdot 40^{2}} = \frac{108,000,000}{16,000}= 6,750\)

Example Question #125 : Mathematical Relationships

\(\displaystyle 4 \sqrt[4] {a}+ 7 \sqrt[4] {b} =18\)

\(\displaystyle 3\sqrt[4] {a} -5 \sqrt[4] {b} = 34\) 

Evaluate \(\displaystyle a\).

Possible Answers:

\(\displaystyle 8\)

The system has no solution.

\(\displaystyle 4,096\)

\(\displaystyle 16\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 4,096\)

Explanation:

Rewrite the two equations by setting \(\displaystyle x = \sqrt [4] {a}\) and \(\displaystyle y = \sqrt [4] {b}\) and substituting:

\(\displaystyle 4 \sqrt[4] {a}+ 7 \sqrt[4] {b} =18\)

\(\displaystyle 4x+7y = 18\)

 

\(\displaystyle 3\sqrt[4] {a} -5 \sqrt[4] {b} = 34\) 

\(\displaystyle 3x-5y = 34\)

 

The result is a two-by-two linear system in terms of \(\displaystyle x\) and \(\displaystyle y\):

\(\displaystyle 4x+7y = 18\)

\(\displaystyle 3x-5y = 34\)

This can be solved, among other ways, using Gaussian elimination on an augmented matrix:

\(\displaystyle \begin{bmatrix} 4& 7\\ 3& -5 \end{matrix} \begin{vmatrix} 18 \\ 34 \\ \end{bmatrix}\)

Perform row operations until the left two columns show identity matrix \(\displaystyle \begin{bmatrix} 1 & 0\\ 0 &1 \end{bmatrix}\). One possible sequence:

\(\displaystyle R1-R2 \rightarrow R1\)

\(\displaystyle \begin{bmatrix} 4 - 3 & 7- (-5 )\\ 3& -5 \end{matrix} \begin{vmatrix} 18 - 34 \\ 34 \\ \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1 & 12 \\ 3& -5 \end{matrix} \begin{vmatrix} -16 \\ 34 \\ \end{bmatrix}\)

\(\displaystyle R2 - 3R1 \rightarrow R2\)

\(\displaystyle \begin{bmatrix} 1 & 12 \\ 3 - 3(1)& -5 - 3(12) \end{matrix} \begin{vmatrix} -16 \\ 34 - 3(-16) \\ \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1 & 12 \\ 0& -41\end{matrix} \begin{vmatrix} -16 \\ 82\\ \end{bmatrix}\)

\(\displaystyle R2 \div (-41 )\rightarrow R2\)

\(\displaystyle \begin{bmatrix} 1 & 12 \\ 0\div (-41 )& -41\div (-41 )\end{matrix} \begin{vmatrix} -16 \\ 82\div (-41 )\\ \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1 & 12 \\ 0& 1 \end{matrix} \begin{vmatrix} -16 \\-2\\ \end{bmatrix}\)

\(\displaystyle R1 - 12 R2 \rightarrow R1\)

 

\(\displaystyle \begin{bmatrix} 1 - 12(0) & 12 - 12(1) \\ 0& 1 \end{matrix} \begin{vmatrix} -16 - 12(-2) \\ 2\\ \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1 & 0 \\ 0& 1 \end{matrix} \begin{vmatrix} 8 \\ 2\\ \end{bmatrix}\)

\(\displaystyle x= 8\) and \(\displaystyle y = 2\). In the former equation, substitute \(\displaystyle \sqrt [4] {a}\) back for \(\displaystyle x\), and raise both sides to the power of 4:

\(\displaystyle \sqrt [4] {a} = 8\)

\(\displaystyle (\sqrt [4] {a}) ^{4}= 8^{4}\)

\(\displaystyle a = 4,096\)

Learning Tools by Varsity Tutors