SAT II Math II : Functions and Graphs

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Functions And Graphs

What is the range of the equation \displaystyle y=\frac{1}{5}?

Possible Answers:

\displaystyle (-\infty, \infty)

\displaystyle [\frac{1}{5},\infty]

\displaystyle [-\frac{1}{5}, \frac{1}{5}]

\displaystyle [\frac{1}{5}]

Correct answer:

\displaystyle [\frac{1}{5}]

Explanation:

The equation given represents a horizontal line.  This means that every y-value on the domain is equal to \displaystyle \frac{1}{5}.

The answer is:  \displaystyle [\frac{1}{5}]

Example Question #12 : Functions And Graphs

What is the x-intercept and y-intercept of:

\displaystyle y=2x-8

Possible Answers:

x-intercept = 1

y-intercept = -2

x-intercept=2

y-intercept=-4

x-intercept=-8

y-intercept=4

x-intercept= 4

y-intercept= -8

Correct answer:

x-intercept= 4

y-intercept= -8

Explanation:

The x-intercept is the value of x that will result in the y value equalling zero and the y-intercept is the y value that results when the x equals zero.

Therefore we replace x with zero to find the y-intecerpt.

\displaystyle y=2(0)-8

\displaystyle y=-8

Now we replace the y with a zero and find our x-intercept

\displaystyle 0=2x-8

\displaystyle 8=2x

\displaystyle 4=x

Example Question #2 : X Intercept And Y Intercept

What is the y-intercept and x-intercept of the function:

\displaystyle y-4=x+8

Possible Answers:

x-intercept=12

y-intercept=12

x-intercept=-12

y-intercept=12

x-intercept=-10

y-intercept=10

x-intercept=-1

y-intercept=2

Correct answer:

x-intercept=-12

y-intercept=12

Explanation:

To find the x and y intercept of the function we need to do algebraic opperations first and then plug in zero for x to find the y-intercept and plug in zero for y to find the x-intercept.

\displaystyle y-4=x+8

\displaystyle y=x+12

 

y-intercept

\displaystyle y=0+12=12

x-intercept

\displaystyle 0=x+12

\displaystyle -12=x

Example Question #13 : Functions And Graphs

Define \displaystyle g(x)=5- \log _{4}\left ( x+5 \right ).

Give the \displaystyle y-coordinate of the \displaystyle y-intercept of the graph of \displaystyle g (nearest hundredth).

Possible Answers:

\displaystyle 6.16

\displaystyle 3.84

\displaystyle 4.14

\displaystyle 4.60

\displaystyle 4.83

Correct answer:

\displaystyle 3.84

Explanation:

Evaluate \displaystyle g(0):

\displaystyle g(x)=5- \log _{4}\left ( x+5 \right )

\displaystyle g(0)=5- \log _{4}\left ( 0+5 \right )

\displaystyle =5- \log _{4} 5

\displaystyle =5- \frac{\ln 5}{\ln 4}

\displaystyle \approx 5- \frac{1.6094}{1.3863}

\displaystyle \approx 5- 1.16

\displaystyle \approx 3.84

Example Question #2 : X Intercept And Y Intercept

Define \displaystyle f(x) = 2 \cdot 3^{x-4}- 7

Give the \displaystyle x-coordinate of the \displaystyle x-intercept of the graph of \displaystyle f (nearest hundredth).

Possible Answers:

\displaystyle 6.98

\displaystyle 5.14

\displaystyle 4.42

\displaystyle 4.18

The graph of \displaystyle f has no \displaystyle x-intercept.

Correct answer:

\displaystyle 5.14

Explanation:

Set \displaystyle f(x) = 0 and solve for \displaystyle x:

\displaystyle f(x) = 2 \cdot 3^{x-4}- 7

\displaystyle 2 \cdot 3^{x-4}- 7= 0

\displaystyle 2 \cdot 3^{x-4}=7

\displaystyle 3^{x-4}=\frac{7}{2} = 3.5

\displaystyle \ln \left (3^{x-4} \right )= \ln 3.5

\displaystyle (x-4 ) \ln 3 = \ln 3.5

\displaystyle x-4 = \frac{\ln 3.5}{ \ln 3} \approx \frac{1.2528}{1.0986} \approx 1.14

\displaystyle x\approx 5.14

Example Question #5 : X Intercept And Y Intercept

Define \displaystyle g(x) = 3 + \sqrt[4]{3x-5}.

Give the \displaystyle y-coordinate of the \displaystyle y-intercept of the graph of \displaystyle g (nearest hundredth).

Possible Answers:

\displaystyle 1.50

\displaystyle 4.50

\displaystyle 4.32

The graph of \displaystyle g has no \displaystyle y-intercept.

\displaystyle 1.68

Correct answer:

The graph of \displaystyle g has no \displaystyle y-intercept.

Explanation:

Evaluate \displaystyle g(0):

\displaystyle g(x) = 3 + \sqrt[4]{3x-5}

\displaystyle g(0) = 3 + \sqrt[4]{3\cdot 0-5}

\displaystyle g(0) = 3 + \sqrt[4]{ -5}

A negative number does not have a real even-numbered root, so \displaystyle g(0) is not a real number. Therefore, the graph of \displaystyle g has no \displaystyle y-intercept.

Example Question #17 : Functions And Graphs

Define \displaystyle f(x) = 4 + \sqrt[5]{2x-9}.

Give the \displaystyle y-coordinate of the \displaystyle y-intercept of the graph of \displaystyle f (nearest hundredth).

Possible Answers:

The graph of \displaystyle f has no \displaystyle y-intercept.

\displaystyle 5.20

\displaystyle 2.45

\displaystyle 5.55

\displaystyle 2.80

Correct answer:

\displaystyle 2.45

Explanation:

Evaluate \displaystyle f(0):

\displaystyle f(x) = 4 + \sqrt[5]{2x-9}

\displaystyle f(0) = 4 + \sqrt[5]{2 \cdot 0 -9}

\displaystyle = 4 + \sqrt[5]{ -9}

\displaystyle \approx 4 + (-1.55)

\displaystyle \approx 2.45

Example Question #4 : X Intercept And Y Intercept

Define \displaystyle h(x) = 12 + \sqrt[3]{3x-7}.

Give the \displaystyle y-coordinate of the \displaystyle y-intercept of the graph of \displaystyle h (nearest hundredth).

Possible Answers:

\displaystyle 13.91

\displaystyle 10.83

The graph of \displaystyle h has no \displaystyle y-intercept.

\displaystyle 13.17

\displaystyle 10.09

Correct answer:

\displaystyle 10.09

Explanation:

Evaluate \displaystyle h(0):

\displaystyle h(x) = 12 + \sqrt[3]{3x-7}

\displaystyle h(0) = 12 + \sqrt[3]{3\cdot 0 -7}

\displaystyle = 12 + \sqrt[3]{ -7}

\displaystyle \approx 12 +(-1.91)

\displaystyle \approx 10.09

Example Question #18 : Functions And Graphs

\displaystyle h(x)=6- \log _{3}\left ( x-7 \right )

Give the \displaystyle x-coordinate of the \displaystyle x-intercept of the graph of \displaystyle h (nearest hundredth).

Possible Answers:

\displaystyle 736

\displaystyle 25

\displaystyle 223

The graph of \displaystyle h has no \displaystyle x-intercept.

\displaystyle 16

Correct answer:

\displaystyle 736

Explanation:

Set \displaystyle h(x) = 0 and solve for \displaystyle x:

\displaystyle 6- \log _{3}\left ( x-7 \right )=0

\displaystyle \log _{3}\left ( x-7 \right )=6

\displaystyle x-7 = 3^{6}

\displaystyle x-7=729

\displaystyle x = 736

Example Question #19 : Functions And Graphs

Define \displaystyle h(x) = 4+ \sqrt[3]{3x-7}.

Give the \displaystyle x-coordinate of the \displaystyle x-intercept of the graph of \displaystyle h (nearest hundredth).

Possible Answers:

The graph of \displaystyle h has no \displaystyle x-intercept.

\displaystyle 19

\displaystyle -19

\displaystyle 23\frac{2}{3}

\displaystyle -23\frac{2}{3}

Correct answer:

\displaystyle -19

Explanation:

Set \displaystyle h(x) = 0 and solve for \displaystyle x:

\displaystyle 4+ \sqrt[3]{3x-7} = 0

\displaystyle \sqrt[3]{3x-7} = -4

\displaystyle \left (\sqrt[3]{3x-7} \right )^{3}= \left (-4 \right )^{3}

\displaystyle 3x-7 = -64

\displaystyle 3x= -57

\displaystyle x = -19

Learning Tools by Varsity Tutors