SAT II Math I : Solving Equations

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #13 : Single Variable Algebra

Solve for \displaystyle x.

\displaystyle \frac{x}{8}-5=-2

Possible Answers:

\displaystyle 12

\displaystyle 3

\displaystyle -3{}

\displaystyle 24

\displaystyle -24

Correct answer:

\displaystyle 24

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle \frac{x}{8}-5=-2 

Add \displaystyle 5 on both sides. Since \displaystyle 5 is greater than \displaystyle 2 and is positive, our answer is positive. We treat as a normal subtraction.

\displaystyle \frac{x}{8}=3 

Multiply \displaystyle 8 on both sides.

\displaystyle x=24

Example Question #11 : Single Variable Algebra

Solve for \displaystyle x.

\displaystyle \frac{x}{-4}-3=-15

Possible Answers:

\displaystyle 12

\displaystyle -12

\displaystyle 28

\displaystyle -48

\displaystyle 48

Correct answer:

\displaystyle 48

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle \frac{x}{-4}-3=-15 

Add \displaystyle 3 to both sides. Since \displaystyle 15 is greater than \displaystyle 3 and is negative, our answer is negative. We treat as a normal subtraction.

\displaystyle \frac{x}{-4}=-12 

When multiplying with another negative number, our answer is positive.

\displaystyle x=48

Example Question #11 : Solving Equations

\displaystyle \sqrt{x}=25

Possible Answers:

\displaystyle 625

\displaystyle 125

\displaystyle 25

\displaystyle 5

\displaystyle 1225

Correct answer:

\displaystyle 625

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle \sqrt{x}=25 

To get rid of the radical, we square both sides.

\displaystyle x=25^2=625

Example Question #12 : Solving Equations

Solve for \displaystyle x.

\displaystyle \sqrt{x+3}=16

Possible Answers:

\displaystyle 253

\displaystyle 13

\displaystyle 256

\displaystyle 259

\displaystyle 16

Correct answer:

\displaystyle 253

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle \sqrt{x+3}=16 

To get rid of the radical, we square both sides.

\displaystyle x+3=16^2=256 

Subtract \displaystyle 3 on both sides.

\displaystyle x=253

Example Question #13 : Solving Equations

Solve for \displaystyle x.

\displaystyle x^2=361

Possible Answers:

\displaystyle 19

\displaystyle \pm19

\displaystyle 361

\displaystyle -361

\displaystyle \pm361

Correct answer:

\displaystyle \pm19

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle x^2=361 

Take the square root on both sides.  Remember when you do that, you need to take account of the negative as well. Two negatives multipied is a positive number.

\displaystyle x=\pm \sqrt{361}=\pm19

Example Question #22 : Single Variable Algebra

Solve for \displaystyle x.

\displaystyle x^2+6x+8=0

Possible Answers:

\displaystyle 2

\displaystyle 2, 4

\displaystyle -2, -4

\displaystyle \pm2

\displaystyle \pm4

Correct answer:

\displaystyle -2, -4

Explanation:

To isolate the variable in the equation, perform the opposite operation to move all constants on one side of the equation and leaving the variable on the other side of the equation.

\displaystyle x^2+6x+8=0 

This is a quadratic equation. We need to find two terms that are factors of the c term that add up to the b term.

In this case, we should have \displaystyle (x+2)(x+4)=0

Solve each binomial individually. 

\displaystyle x+2=0 Subtract \displaystyle 2 on both sides. \displaystyle x=-2

\displaystyle x+4=0 Subtract \displaystyle 4 on both sides. \displaystyle x=-4

Answers are \displaystyle -2, -4.

Example Question #12 : Solving Equations

Solve for \displaystyle x.

\displaystyle x+24=103

Possible Answers:

\displaystyle 127

\displaystyle 89

\displaystyle 69

\displaystyle 117

\displaystyle 79

Correct answer:

\displaystyle 79

Explanation:

\displaystyle x+24=103 Subtract \displaystyle 24 on both sides.

\displaystyle x=79

Example Question #14 : Solving Equations

Solve for \displaystyle x.

\displaystyle x+46=21

Possible Answers:

\displaystyle -15

\displaystyle 67

\displaystyle -35

\displaystyle 77

\displaystyle -25

Correct answer:

\displaystyle -25

Explanation:

\displaystyle x+46=21 Subtract \displaystyle 46 on both sides. Since \displaystyle 46 is greater than \displaystyle 21 and is negative, our answer is negative. We treat as a normal subtraction.

\displaystyle x=-25

Example Question #13 : Solving Equations

Solve for \displaystyle x.

\displaystyle x-85=213

Possible Answers:

\displaystyle 228

\displaystyle 298

\displaystyle 178

\displaystyle 168

\displaystyle 128

Correct answer:

\displaystyle 298

Explanation:

\displaystyle x-85=213 Add \displaystyle 85 to both sides.

\displaystyle x=298

Example Question #26 : Single Variable Algebra

Solve for \displaystyle x.

\displaystyle x-145=-241

Possible Answers:

\displaystyle 86

\displaystyle 126

\displaystyle -96

\displaystyle -76

\displaystyle -106

Correct answer:

\displaystyle -96

Explanation:

\displaystyle x-145=-241 Add \displaystyle 145 on both sides. Since \displaystyle 241 is greater than \displaystyle 145 and is negative, our answer is negative. We treat as a normal subtraction.

\displaystyle x=-96

Learning Tools by Varsity Tutors