SAT II Math I : Single-Variable Algebra

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #121 : Single Variable Algebra

Factor completely:

\displaystyle t^{3} +4t^{2}-9t -36

Possible Answers:

Correct answer:

Explanation:

The grouping technique works here:

\displaystyle t^{3} +4t^{2}-9t -36

\displaystyle =\left (t^{3} +4t^{2} \right )-\left (9t +36 \right )

The first factor is the difference of squares and can be factored further accordingly:

Example Question #121 : Single Variable Algebra

Factor completely:

\displaystyle t^{3} - 243

Possible Answers:

\displaystyle (t - 3)\left ( t^{2} + 81\right )

\displaystyle (t - 3)\left ( t^{2}+ 3t + 81\right )

\displaystyle (t - 3)(t-9) ^{2}

\displaystyle (t - 3)\left ( t^{2}+9t + 81\right )

The polynomial is prime.

Correct answer:

The polynomial is prime.

Explanation:

Since the first term is a perfect cube, the factoring pattern we are looking to take advantage of is the difference of cubes pattern. However, 243 is not a perfect cube of an integer \displaystyle (6^{3} = 216 < 243 < 7^{3} = 343), so the factoring pattern cannot be applied.  No other pattern fits, so the polynomial is a prime.

Example Question #122 : Single Variable Algebra

Exponentiate:

\displaystyle \left (x^{2} + x + 7 \right )^{2}

Possible Answers:

\displaystyle x^{4} + 2x^{3} +15x^{2} + 14x+ 49

\displaystyle x^{4} + x^{2} + 49

\displaystyle x^{4} + x^{3} +15x^{2} + 14x+ 49

\displaystyle x^{4} + 2x^{3} +8x^{2} + 14x+ 14

\displaystyle x^{4} + x^{3} +8x^{2} + 14x+ 14

Correct answer:

\displaystyle x^{4} + 2x^{3} +15x^{2} + 14x+ 49

Explanation:

\displaystyle \left (x^{2} + x + 7 \right )^{2} = \left (x^{2} + x + 7 \right )\left (x^{2} + x + 7 \right )

Vertical multiplication is perhaps the easiest way to multiply trinomials.

                         \displaystyle x^{2} + x + 7

                         \displaystyle \underline{x^{2} + x + 7}

                     \displaystyle 7x^{2} + 7x + 49

              \displaystyle x ^{3 } + x^{2} + 7x

   \displaystyle \underline{x ^{4 } + x^{3 } + 7x^{2} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }

\displaystyle x^{4} + 2x^{3} +15x^{2} + 14x+ 49

Example Question #123 : Single Variable Algebra

Exponentiate:

 \displaystyle \left ( 9R - 10\right )^{3}

Possible Answers:

\displaystyle 729R^{3}-1,000

\displaystyle 729R^{3}-2,430R^{2} + 2,700R-1,000

\displaystyle 729R^{3}-810R^{2} + 900R-1,000

\displaystyle 729R^{3}-810R^{2} - 900R+1,000

\displaystyle 729R^{3}-2,430R^{2} - 2,700R+1,000

Correct answer:

\displaystyle 729R^{3}-2,430R^{2} + 2,700R-1,000

Explanation:

The difference of two terms can be cubed using the pattern

\displaystyle (A-B)^{3} = A ^{3}-3A^{2}B + 3A B^{2}-B^{3}

Where \displaystyle A = 9R, B = 10:

\displaystyle (A-B)^{3} = A ^{3}-3A^{2}B + 3A B^{2}-B^{3}

\displaystyle (9R-10)^{3} = (9R) ^{3}-3(9R)^{2}\cdot 10 + 3(9R) \cdot 10^{2}-10^{3}

\displaystyle (9R-10)^{3} =729R^{3}-3\cdot 81R^{2}\cdot 10 + 3(9R) \cdot 100-1,000

\displaystyle (9R-10)^{3} =729R^{3}-2,430R^{2} + 2,700R-1,000

Example Question #124 : Single Variable Algebra

How many of the following are prime factors of \displaystyle 81y^{4}- 1 ?

I) \displaystyle 9y^{2} + 1

II) \displaystyle 3y^{2} + 1

III) \displaystyle 3y+1

IV) \displaystyle 3y-1

Possible Answers:

Four

None

Three

Two

One

Correct answer:

Three

Explanation:

Factor \displaystyle y^{4}- 81 all the way to its prime factorization.

\displaystyle y^{4}- 81 can be factored as the difference of two perfect square terms as follows:

\displaystyle y^{4}- 81

\displaystyle =\left ( 9y^{2} \right )^{2} - 1^{2}

\displaystyle =\left (9 y^{2} + 1 \right )\left ( 9y^{2} - 1 \right )

\displaystyle 9y^{2} + 1 is a factor, and, as the sum of squares, it is a prime. \displaystyle 9y^{2} - 1 is also a factor, but it is not a prime factor - it can be factored as the difference of two perfect square terms. We continue:

\displaystyle \left (9 y^{2} + 1 \right )\left ( 9y^{2} - 1 \right )

\displaystyle =\left ( 9y^{2} + 1 \right )\left [ \left (3y \right ) ^{2} - 1^{2} \right ]

\displaystyle =\left ( 9y^{2} + 1 \right )\left (3y+1 \right )\left (3 y-1\right )

Therefore, of the given four choices, only \displaystyle 3y^{2} + 1 is not a factor, so the correct response is three.

Example Question #1 : Multiplying And Dividing Rational Expressions

\displaystyle \small \frac{x^2-5x-6}{x+1}

For all values \displaystyle x\neq -1, which of the following is equivalent to the expression above?

Possible Answers:

\displaystyle \small x+6

\displaystyle \small x-3

\displaystyle \small x-6

\displaystyle \small x-2

Correct answer:

\displaystyle \small x-6

Explanation:

First, factor the numerator. We need factors that multiply to \displaystyle \small -6 and add to \displaystyle \small -5.

\displaystyle \small 1*-6=-6\ \text{and}\ 1+(-6)=-5

\displaystyle \small x^2-5x-6=(x-6)(x+1)

We can plug the factored terms into the original expression.

\displaystyle \small \frac{x^2-5x-6}{x+1}=\frac{(x-6)(x+1)}{(x+1)}

Note that \displaystyle \small (x+1) appears in both the numerator and the denominator. This allows us to cancel the terms.

\displaystyle \frac{(x-6)(x+1)}{(x+1)}=(x-6)

This is our final answer.

Example Question #126 : Single Variable Algebra

Simplify the following expression: 

\displaystyle 3x+18y=81

Possible Answers:

\displaystyle x+18y=81

\displaystyle x+6y=81

\displaystyle 3x+6y=27

\displaystyle x+6y=27

\displaystyle 2x+9y=40

Correct answer:

\displaystyle x+6y=27

Explanation:

When simplifying an equation,you must find a common factor for all values in the equation, including both sides.  

\displaystyle 3,18,and, \displaystyle 81 can all be divided by \displaystyle 3 so divide them all at once 

\displaystyle \left ( \frac{3}{3}=1, \frac{18}{3}=6, \frac{81}{3}=27\right ).  

This leaves you with 

\displaystyle x+6y=27.

Example Question #127 : Single Variable Algebra

Simplify the expression\displaystyle \frac{x^5(3x^2y^3)}{x^4y^2z}

Possible Answers:

\displaystyle \frac{3x^6y}{z}

Already in simplest form

\displaystyle 3x^3y

\displaystyle \frac{3x^3}{yz}

\displaystyle \frac{3x^3y}{z}

Correct answer:

\displaystyle \frac{3x^3y}{z}

Explanation:

\displaystyle \frac{x^5(3x^2y^3)}{x^4y^2z}

Simplify the numerator by multiplying in the \displaystyle \tiny x^5 term

\displaystyle \frac{3x^7y^3}{x^4y^2z}

Cancel out like terms in the numerator and denominator.

\displaystyle \frac{3x^3y}{z}

Example Question #128 : Single Variable Algebra

Simplify:  \displaystyle (x^2)\cdot (\frac{x^{-1}}{x})

Possible Answers:

\displaystyle x^3

\displaystyle \frac{1}{x^3}

\displaystyle 1

\displaystyle \frac{1}{x}

\displaystyle \frac{1}{x^2}

Correct answer:

\displaystyle 1

Explanation:

Rewrite the denominator of the second fraction using a power.

\displaystyle (\frac{x^{-1}}{x}) = (\frac{x^{-1}}{x^1})

Using the subtraction rule of exponents, we can simplify this as one term.

\displaystyle x^{-1-1} = x^{-2}

The expression becomes:

\displaystyle (x^2)\cdot (x^{-2})

Apply the addition rule of exponents.

\displaystyle x^{2+(-2)} = x^0 =1

The answer is:  \displaystyle 1

Example Question #122 : Single Variable Algebra

\displaystyle \frac{(x^7 - x^6)}{ (x - 1)} =

Possible Answers:

\displaystyle x^5

\displaystyle x^6

\displaystyle \frac{x}{(x-1)}

\displaystyle \frac{1}{x-1}

\displaystyle x^6 - x^5

Correct answer:

\displaystyle x^6

Explanation:

Factor an \displaystyle x^6 in the numerator to get:

\displaystyle \frac{(x^7 - x^6)}{ (x - 1)} =\frac{x^6(x-1)}{(x-1)}

We can now cancel out \displaystyle (x-1) from the numerator and denominator leaving the answer.

\displaystyle x^6

Learning Tools by Varsity Tutors